- 更多网络例句与拟正则元相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In section one, we study regular cu-rings by use of full elements in rings, and give some equivalent conditions for the endomorphism ring of quasi-projective modules and quasi-injective modules to be a cu-ring.
在第一部分,我们利用环中的完全元对正则cu-环进行刻画,并给出了拟投射模和拟内射模的自同态环是cu-环的一系列等价条件。
-
There have been a lot of studies this aspect when the exact solution u∈H~2 or u∈H~3. [4], [52] and [50]studied the convergence of conforming linear triangle elements with minimal regularity assumptions u∈H~4, here u is the solutions of the second order elliptic problems. However, their is another vital deficiency of the previous studies, i.e., they relies on the regularity assumption or quasi-uniform assumption on the subdivision of meshes.
对二阶问题,构造了一个新的单元格式,当其精确解具有低正则性时,在不要求网格满足正则假设或拟一致假设的条件下,我们得到了最优误差估计,与[33]相比,我们的证明方法较为简单;对于Stokes问题,研究五节点非协调矩形元对它的逼近,通过引入全新的估计方法,给出了关于速度、压力的超逼近性质。
-
On the basis, three equivalent statements are obtained. Let S be a semigroup with left central idempotents, then (1) S is a quasi-right semigroup;(2) S is a quasi-completely regular, and RegS is an ideal;(3) S is a nil-extension of strong semilattice of right semigroup.
在此基础上得到了3个等价命题:若S为具有左中心幂等元半群,则(1) S为拟右半群;(2) S为拟完全正则的,RegS为S的理想;(3) S为右群强半格的诣零理想扩张。
-
By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup;(2) RegS is a completely regular semigroup;(3) R(superscript *) is the smallest semilattice congruence on S;(4) Each R-class T(subscript α) on RegS is a right group;(5) T(subscript α)G(subscript α)×E(subscript α), where G(subscript α) is a group, E(subscript α) is a right zero semigroup.
利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1) S为拟完全正则半群;(2) RegS为完全正则半群;(3) R为S上的最小半格同余;(4) RegS上的每个R-类T为右群;(5) TG×E,其中G为群,E为右零半群。
- 更多网络解释与拟正则元相关的网络解释 [注:此内容来源于网络,仅供参考]
-
quas invertible element:拟正则元
quartile 四分位 | quas invertible element 拟正则元 | quasi 准
-
quasi-regular left ideal:拟正则左理想
拟正则元|quasi-regular element | 拟正则左理想|quasi-regular left ideal | 拟周期解|quasi-periodic solution
-
left quasi inverse:左拟逆元
left projective space 左射影空间 | left quasi inverse 左拟逆元 | left quasi regularity 左拟正则性
-
left quasi regularity:左拟正则性
left quasi inverse 左拟逆元 | left quasi regularity 左拟正则性 | left quasi simple ring 左拟单环
-
quasi random sampling:拟随机抽样
quasi polynomial 拟多项式 | quasi random sampling 拟随机抽样 | quasi regular element 拟正则元
-
quasi regular element:拟正则元
quasi random sampling 拟随机抽样 | quasi regular element 拟正则元 | quasi rotation 拟旋转
-
quasi rotation:拟旋转
quasi regular element 拟正则元 | quasi rotation 拟旋转 | quasi rotation group 拟旋转群
-
quasi-regular right ideal:拟正则右理想
拟正则函数|quasi-regular function | 拟正则右理想|quasi-regular right ideal | 拟正则元|quasi-regular element
-
right quasi-regular element:右拟正则元
右零因子||right zero divisor | 右拟正则元||right quasi-regular element | 右逆元||right inverse element