- 更多网络例句与拓扑维数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Firstly, we establish a topological space associated to the derived category of a finite dimensional algebra with finite global dimension, which is a generalization of module variety and complex variety.
首先,我们在有限整体维数的代数的复形范畴上建立了复形拓扑空间。
-
Ringel realized positive parts of semisimple Lie algebras in the framework of Ringel-Hall algebras. The main result of this thesis is to build a geometric and topological model over triangulated categories such as derived categories and stable module categories of repetitive algebras. We defines a Lie bracket by Euler characteristics of constructible subsets and thus realizes infinite dimensional Lie algebras of various types with non-degenerated bilinear form.
本文的主要结果是在导出范畴和重复代数的稳定模范畴等三角范畴水平上建立相应的几何-拓扑模型,并利用相应可构集的欧拉示性数定义了一个Hall代数的交换子乘法,从而在三角范畴水平上实现了一大类无限维李代数的整体构造,并且这类李代数本质上都具有非退化的不变双线性型。
-
We find some factors,such as conditional stability of a variable,the reconstructed dimension,and the delay time,could effect topologicalproperties of reconstruction.
研究了各种因素,如变量的条件稳定性、重构维数、及延迟时间,对重构拓扑的影响。
-
For example, Keyfitz made the classification of the bifurcations in one state variable, without symmetry up to codimension 7; Golubitsky and Schaeffer obtained the classification of the bifurcation problems in one state variable with Z_2 symmetry, in one parameter up to codimension 3; Golubitsky and Roberts studied the classification of degenerate Hopf bifurcation in two state variables with dihedron D_4 symmetry, in one parameter up to topological codimension 2; Melbourne obtained the classification of bifurcations in three state variables with octahedral symmetry, in one parameter, up to
需要指出的是以上研究均没有考虑分歧参数的对称性,Futer,Sitta和Stewart的工作虽然考虑了分歧参数的对称性,但仅限于分歧参数与状态变量具有相同的对称性,他们得到了状态变量与分歧参数均关于二面体群D_4对称,拓扑余维数不大于1的分歧问题的分类。高守平和李养成则讨论状态变量和分歧参数均具有对称性且对称性可以不同的分歧问题,并给出了状态(来源:A770707BC论文网www.abclunwen.com)变量关于二面体群D_4对称,分歧参数关于S~1对称,拓扑余维不超过1的分歧问题的分类。本文第一章讨论两个状态变量关于二面体群D_3对称,两个分歧参数关于O(2)对称的分歧问题,给出了该类分歧问题在非退化条件q(0)≠0下所有情形的分类与相应的识别条来源:AdadaBC论文网www.abclunwen.com
-
Compared with the global harmonic mapping method, this approach has the following advantages.(1) The efficiency of the algorithm is greatly improved. The computational cost involved no longer increases exponentially with the number of vertices of the meshes to be fused.(2) The algorithm is robust as the ambiguity in graph structure combination is alleviated.(3) The detail of the cut mesh is fully kept.(4) The topology restriction of the original algorithm is eliminated.
与原有的基于全局调和映射的融合方法相比,新方法的算法效率大幅度提升,求解时间不再随融合模型顶点数的增加而呈指数增长;减少了二维网格拓扑合并中奇异情况出现的概率,提高了算法的稳定性;被剪切网格的细节得到完整保留;消除了原算法对融合区域拓扑的限制。
-
Usually the fractal dimension of F is greater than its topological dimension.
以某种方式定义的分形集合的分形维数通常是大于它的拓扑维数。
-
Although its topological dimension is 2, its Hausdorff-Besicovitch dimension is log(3)/log(2)~1.58, a fractional value (that's why it is called a fractal).
虽然它的拓扑维数是2 ,其的Hausdorff - besicovitch层面是日志( 3 )/日志( 2 )? 1.58 ,分数的价值(这就是为什么它被称为分形)。
-
A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension.
这个定义说明分形是Hausdorff-Besicovitch维数严格大于拓扑维数的集合。
-
It is proved that the topological neighborhood is self-adaptive and goes to triviality with the increase of the dimension.
对拓扑邻域进行了理论分析,说明其是自适应的,随着维数的不断升高,趋于平凡拓扑邻域。
-
Based on a new three-dimensional topology-related grain growth rate equation proposed recently by MacPherson and Srolovitz, a set of analytical quasi-stationary grain size distributions were obtained.
以MacPherson-Srolovitz提出的三维个体晶粒长大拓扑依赖速率方程以及三维晶粒组织的晶粒尺寸--晶粒面数间的抛物线型统计关系为基础,导出了相应的描述三维准稳态晶粒尺寸分布的函数族。
- 更多网络解释与拓扑维数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
topological dimension:拓扑维数
它所描述的图形可以是分数维.分形的特征是整体和局部有严格的或统计意义下的自相似性.描述分形的定量参数为分维,而维数的定义种类很多,如相似维数、Hausdorff维数、盒维数(box dimansion)、拓扑维数(topological dimension)等,需要随研究对象的改变来选择.研究表明,
-
Topologic creation:拓扑建立
Topographic Quadrangle Maps 地形地图方格 | Topologic creation 拓扑建立 | Topologic dimension 拓扑维数