- 更多网络例句与拓扑完备性相关的网络例句 [注:此内容来源于网络,仅供参考]
-
By using these convergence theorems,it presents the Silverman-To-eplitz regular theorem and Samaratunga-Sember theorem on the Abelian topologicalgroups,the Vitali-Hahn-Saks theorem on algebras and the weak sequentially completenesstheorem of 〓-dual spaces of sequence spaces,etc.
这是抽象分析中的两个基本定理。作为应用,给出了Abelian拓扑群上的Silverman-Toeplitz正则性定理、Samaratunga-Sember定理、代数上的Vitali-Hahn-Saks定理,以及序列空间的〓对偶空间之弱序列完备性定理等。
-
In the end of this text gives a description about the compactness of somecertain locally convex topological space with convergence and the completenessproblem.
某种确定的收敛下的局部凸拓扑空间以及凸拓扑下的紧性,完备性问题,在文章的最后给与了阐述。
-
It investigates mainly the dualinvariant of λ- multiplier convergent series, the full invariant ofλ-multiplier convergent series, the λ- multiplier convergent series in spaceswith a basis, the compact sets in the infinite matrix topological algebras, thecharacteristics of have the same compact sets in different topologies,the weak sequentially completeness of , the characteristics ofSchur-matrices, the characteristics of p- uniform Toeplitz matrices and theEberlein-Smulian theorem in the locally convex spaces, etc.
主要研究了〓数乘收敛级数的对偶不变性,〓数乘收敛级数的全程不变性,有基空间中的〓数乘收敛级数,无穷矩阵拓扑代数〓中的紧集,〓在不同拓扑下具有相同紧集的刻划,〓的弱序列完备性,Schur—矩阵的刻划,p-一致Toeplitz矩阵的刻划以及局部凸空间上的Eberlein—Smulian定理等。
-
We introduce the uniform Hausdorff metric H on the space 〓 offuzzy complex numbers and investigate the topological structure of 〓.We show the completeness of 〓 and study on 〓 limits of thesequence of fuzzy complex numbers,metrical and leverwise convergence,and relation between metrical convergence and leverwise convergence.Weprove the equivalence theorem of metrical convergence and leverwiseconvergence on 〓.
在模糊复数空间〓上引进一致Hausdorff度量H,讨论了模糊复数空间的拓扑结构,证明了的完备性,并在完备的模糊复数度量空间上研究了模糊复数列的极限、度量收敛和水平收敛,讨论了度量收敛与水平收敛之间的关系,在上证明了度量收敛与水平收敛的等价性定理。
-
A multi-level hierarchical image representation that preserves topological relation equivalency and a set of well-complete functional architecture that efficiently reflects this representation are presented, and the digital Jordan curve theorem is validated.
基于复形理论定义了数字图像空间的拓扑元素及其性质,在此基础上提出一套完备的保持拓扑等价性的层次表达数字图像的数学模型体系框架,并验证了层次表达结构中的Jordan曲线定理。
-
According to the existence results of general equilibrium problems and vector equilibrium problems have been studied more and more. Inspired and motivated by these research results, this paper is devoted to study systematically a class of equilibrium problems, which is unify and extension of a large number of known equilibrium problems and variational inequalities problems. The research is carried on from three aspects.Firstly, in finitely continuous topological spaces, we introduce four new types of the system of generalized vector quasi-equilibrium problems, and we derive some existence results of a solution for the system of generalized vector quasi-equilibrium problems via the maximal element theorems in product finitely continuous topological spaces.Secondly, in complete metric spaces, we provide the Ekeland variational principle to equilibrium problems with set-valued maps. And via the Ekeland variational principle, existence results for vector equilibrium problem with set-valued maps and the system of vector equilibrium problem with set-valued maps.
针对一般的均衡问题和向量均衡问题解的存在性,已有许多研究成果,受这些成果的启发,本文主要从理论上较为系统地研究了一类均衡问题,它统一和推广了许多已有的均衡问题和变分不等式问题,研究分有三个方面;首先,在有限连续拓扑空间中,我们提出了四类广义向量拟均衡系,并借助于有限连续拓扑空间中的极大元定理讨论了这四类均衡系问题的解的存在性问题,然后,在完备度量空间中,我们给出了关于集值均衡问题的Ekeland变分原理,并利用Ekeland变分原理分别讨论了集值向量均衡问题和集值向量均衡系问题的解的存在性。
-
The relation between the completeness of several local convex topology in normed vector space and that of induction topology of its unit ball was pointed out in this paper.
本文指出了赋范线性空间上的一些局部凸拓扑的完备性与它的单位球上相应的诱导拓扑的完备性之间的关系。
-
Spatial query language ; topological relationship ; complex spatial feature ; completeness ; exclusiveness
空间查询语言;拓扑关系;复杂空间对象;完备性;互斥性
-
Prove the same completeness of the two topological vector space of linear topological equivalence.
证明两个线性拓扑等价的拓扑向量空间具有相同的完备性。
-
Then,it notices that all infi-nite matrix operators between the sequence spaces with the WGHP may form a topologicalalgebra.It also studies the weak sequentially completeness of this class of topological al-gebras and some other basic properties.
其次发现了具有WGHP序列空间上无穷矩阵算子所成之拓扑代数,并研究了这类无穷矩阵拓扑代数的弱序列完备性等一些基本性质。
- 更多网络解释与拓扑完备性相关的网络解释 [注:此内容来源于网络,仅供参考]
-
topological circle:拓扑圆
topological cell 拓扑胞腔 | topological circle 拓扑圆 | topological completeness 拓扑完备性
-
topological completeness:拓扑完备性
topological circle 拓扑圆 | topological completeness 拓扑完备性 | topological complex 拓扑复形
-
topological complex:拓扑复形
topological completeness 拓扑完备性 | topological complex 拓扑复形 | topological convergence 拓扑收敛