- 更多网络例句与恰当微分方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Two fundamental concepts are intro- duced:exact Yang-Mills equation and characteristic transformation of Yang-Mills gauge fields.
对于这种恰当的YM-方程,构造了一类线性微分变换,称之为SU(2)规范场的示性变换。
-
In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.
在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。
- 更多网络解释与恰当微分方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
exact differential equation:恰当微分方程
恰当微分[形]式|exact differential form | 恰当微分方程|exact differential equation | 恰普雷金方程|Chaplygin equation