- 更多网络例句与恒等映射相关的网络例句 [注:此内容来源于网络,仅供参考]
-
If one of the following conditions is satisfied , then the trivial extension T of H is not a bialgebra .(1) H is not a Hopf algebra ,(2) H is a Hopf algebra , but the antipode of H is not the identity map .(3) char can not divide 2dim H .
若下述三个条件之一成立,则T不是双代数:(1) H不是Hopf代数,(2) H是Hopf代数,但其反极元S不是恒等映射,(3) char不能整除2dim H。
-
Finally, we prove that every Jordan derivable mapping at zero point on B is the sum of an inner derivation and a scalar multiplies identity mapping.
最后我们证明了B上的在零点Jordan可导的线性映射是一内导子与数乘恒等映射之和。
-
It is proved that every Lie derivation of nest algebra is the sum of an associative derivation and a general trace. Every Lie isomorphism between nest subalgebras of a factor von Neumann algebra is the sum of an isomorphism and a general trace or the sum of a negative anti-isomorphism and a general trace. Lie invariant subspace of linear mappings on Banach algebras is introduced, and linear maps from nest subalgebra of a factor von Neumann algebra into itself which satisfy the property that the space of derivations is their Lie invariant subspaces are characterized. Simultaneously, it is shown that such maps are Lie derivations modulo the set of scalar multiple of the identity.
得到Lie导子的特征表示,即套代数上的任何一个Lie导子都是内导子与广义迹之和;给出了Lie同构和同构及反同构之间的关系,即因子von Neumann代数中套子代数之间的任何一个Lie同构要么是同构与广义迹之和要么是负反同构与广义迹之和;引入了Banach代数上线性映射的Lie不变子空间,并给出von Neumann代数中套子代数上以导子空间为Lie不变子空间的线性映射的一个刻画,同时也表明在模去数乘恒等映射的意义下,以导子空间为Lie不变子空间的线性映射就是Lie导子。
-
We discuss the completely tr-rank nonincreasing linear maps on finite vN algebras and prove that a unital self-adjoint and surjective linear map on finite vN algebras is completely tr-rank preserving if and only if it is a spatial 〓-automorphism that leaves the central elements fixed.
我们刻画了有限vN代数上完全迹秩不增的线性映射;也证明了有限vN代数上保单位元的自伴线性满射完全保迹秩当且仅当它是空间〓-自同构且限制到中心上是恒等映射。
-
In Chapter 3, we pay our attention on Jordan triple derivable maps at zero point of nest subalgebras of factor von Neumann algebras.
证明了因子von Neumann代数中套子代数上零点Jordan三重可导映射是导子与恒等映射之和。
- 更多网络解释与恒等映射相关的网络解释 [注:此内容来源于网络,仅供参考]
-
identity graph:恒等图
identity function 恒等函数 | identity graph 恒等图 | identity map 恒等映射
-
identity map:恒等映射
将每一点送至自身之处的恒等映射(identity map)理所当然地是绕行了一周;它的度数是1. 把任何模为1的复数都送至其平方的映射将把幅角乘以二. 故,若绕行圆一周,则平方映射就会绕行两圈:它的 度数是2. 当一映像受到形变时,它的度数并不会改变,
-
identity matrix:恒等矩阵
identity mapping 恒等映射 | identity matrix 恒等矩阵 | identity relation 恒等关系式
-
identity matrix:单位方阵
恒等映射 identity mappings | 单位方阵 identity matrix | 恒等算子;单位算子 identity operator
-
identity operator:恒等算子
identity map 恒等映射 | identity operator 恒等算子 | identity permutation 恒等排列