- 更多网络例句与微分相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The paper draws linear unusual differential equation a_0y~(n+a_1y~(n-1+…+a_(n-1)y′+α_ny=∑mi=0k_iδ~(i from the practical problems in the engineering field of electronic technology,circuit analysis,mechanics of materials,mechanical design and civil architecture,discusses the dependence of the solution of the equation on that of homogeneous,gives the algorithm of the equation,and draws the general algorithm of semi-odd number rank unusual Bessel differential equation.
在电子技术、电路分析、材料力学、机械设计和土木建筑等工程技术领域中,常会遇到一类非齐次项为奇异函数的广义线性微分方程,本文给出这类奇异微分方程的解对齐次解的依赖性,从而得出这类奇异微分方程的解法,求出了半奇数阶奇异Bessel微分方程的通解。如下列应用问题中的微分方
-
At that time, however, nonlinear differential equations had no universal solutions and some problems of celestial mechanics were still required to be resolved.
而非线性微分方程没有普遍解法以及一些天体力学问题的未决,促使庞加莱在微分方程求解过程中引入定性思想,创立了常微分方程实域定性理论这一新分支,突破了原有的微分方程求解的思维束缚,是微分方程研究历史上的一次重大飞跃。
-
Based on analyzing the d-δ commutation relation for the linear stationay differential constrained systems and affine differential constrained systems, the relationship between noncommutator of differentiation and variation and nonholonomicity of the differential constraints is briefly proved by means of Frobenius integrability theory.
文中以微分约束的Frobenius可积性理论为依据,在分析线性稳定微分约束系统和仿射微分约束系统的d-δ对易关系基础上,简要论证了微分与变分的非对易子与微分约束的非完整性之间的关系。
-
this paper proposes a design method which can improve the performance of fractional order differential filter obviously under the premise of not increasing the structure complexity of the filter.this scheme which bases on mutually compensatory characters of typical differentiator and uses interpolated method to improve performance of iir digital fractional differential filter.the improved frequency response of fractional differential filter is more close to ideal fractional differential filter,it indicates the validity of proposed method.
摘 要:提出一种在不增加分数阶微分滤波器复杂度的前提下,能有效提高分数阶微分滤波器性能的方法。该方法利用几种基于典型微分算子的分数阶微分滤波器之间的互补性,通过相互内插结合的方式,用于提高iir分数阶数字滤波器的性能。改进后的分数阶微分滤波器频率响应更接近理想分数阶微分滤波器,表明所提方法的有效性。
-
Moreover,using Ito differential formul a to the constructed Lyapunov function along solutions of lto stochastic differential systems,Lyapunov method is adopted to set up the fundamental theory of dissipativity in the module corresponding to the theory on the dissipativity of deterministic ordinary dif- fere.
提出了有关Ito型随机微分系统耗散性理论的新概念:按模耗散、按模等度耗散和按模一致耗散,并利用Lyapunov方法,借助于Ito 微分公式沿着Ito型随机微分系统的解对所构造的Lyapunov函数求导数,给出了Ito型随机微分系统有关按模耗散理论的一些代数判据,获得了与确定性常微分系统耗散性理论相对应的结论,最后的算例证明了该方法的有效性和可行性。
-
First of all,we have given some of the basic concepts of differential equations, described the constant coefficient linear ordinary differential equation solution, for a class of second-order variable coefficient linear ordinary differential equation initial value problem, an approximate solution, the method is first unknown function of a definition for N sub-interval, and then in between each district within a constant coefficient ordinary differential equations similar to the replacement, the solution has been the problem as similar to the original analytical solution, and then gives a detailed second-order change order coefficient of linear homogeneous ordinary differential equation solution examples, the examples of the approximate method proposed in this paper is valid.
首先给出了微分方程的一些基本概念,讲述了常系数线性常微分方程的解法,针对一类二阶变系数线性常微分方程初值问题,提出了一个近似解法,本方法是先对未知函数的一个定义区间作N等分,然后在每一个小区间内用一个常系数常微分方程近似替换,所得到的解作为原问题的近似解析解,随后详细给出了一个求二阶变系数齐次线性常微分方程的解的实例,该实例说明本文提出的近似方法是有效的。
-
In order to obtain more general solution of second order linear differential equation with constant coefficients, which is important in theory and practice, on the basis of knowing a special of the second order linear differential equation with constant coefficients and by using the method of variation of constant, the second order linear differential equation with constant coefficients is transferred to the reduced differential equation and a general formula of the second order linear differential equation with constant coefficients is derived.
为了更多地得到理论上和应用上占有重要地位的二阶常系数线性非齐次微分方程的通解,这里使用常数变易法,在先求得二阶常系数线性齐次微分方程一个特解的情况下,将二阶常系数线性非齐次微分方程转化为可降阶的微分方程,从而给出了一种运算量较小的二阶常系数线性非齐次微分方程通解的一般公式,并且将通解公式进行了推广,实例证明该方法是可行的。
-
Optimization; parametric quadratic convex programming; set-valued map; directional derivative; linear stability; solution-set map; parametric linear programming; error bound; subdifferential map; lower locally directionally Lipschitzian; upper locally di-rectionally Lipschitzian; locally directionally Lipschitzian; convex function; quasidiferential; kernelled quasidiferential; quasi-kernel; star-kernel; star-diferential; Penot diferential; subderivative; superderivative; epiderivative; set-valued optimization; set-valued analysis; subdifferential; optimization condition;ε-dual; scalization; generalized subconvexlike-cone;ε-Lagrange multiplier
基础科学,数学,运筹学最优化;集值映射;方向导数;线性稳定;最优解集映射;参数线性规划;参数凸二次规划;误差界;次微分映射;下局部方向Lipschitzian;上局部方向Lipschitzian;局部方向Lipschitzian;凸函数;拟微分;核拟微分;拟核;星核;星微分; Penot-微分;上导数;下导数; Epi-导数;集值优化;集值分析;集值映射的次微分;最优性条件;广义锥次类凸;ε-对偶;数乘;ε-Lagrange乘子
-
It is often used to describe problems in dynamics, control theory, bionomics and economics, epidemiology and many other fields either about its experimental or applied aspects, because it can reflect facts more veraciously using the delay differential equations to solute the above problems considering the influence of time and lag sufficiently.
在时滞微分方程的研究方面,从一般的特征方程到超越特征方程,从无参数的微分方程到有参数的微分方程,从无时滞的微分方程到有一个时滞的微分方程直至两个甚至多个时滞的微分方程为题的研究,经历了一个发展相当快的过程。
-
In Chapter 3, we discuss the self-adjoint boundary-value problems for products of m differential operators generated by the same symmetric differential expression of order n defined on a, b
第三章 讨论了m个由同一n阶对称微分算式生成的赋予某种边界条件的微分算子乘积自伴边值问题,结合常微分算子自伴扩张的一般构造理论,分别给出了两个四阶微分算子、两个n阶微分算子、m个n阶微分算子乘积自伴边条件的解析刻划,得到了乘积微分算子是自伴的充分必要条件及与乘积算子自伴性有关的一些有益结果。
- 更多网络解释与微分相关的网络解释 [注:此内容来源于网络,仅供参考]
-
alternating differential form:外微分形式
alternating chain 交错链 | alternating differential form 外微分形式 | alternating differential of differential form 微分形式的交错微分
-
alternating differential of differential form:微分形式的交错微分
alternating differential form 外微分形式 | alternating differential of differential form 微分形式的交错微分 | alternating direction method 交替方向法
-
difference differential equation:微分差分方程,差微分方程=>差分微分方程式
difference voltmeter 差值电压表 | difference-differential equation 微分差分方程,差微分方程=>差分微分方程式 | difference-differentialequation 差分微分方程
-
linear differential equation:线性微分方程=>線形微分方程式
linear difference equation 线性差分方程 | linear differential equation 线性微分方程=>線形微分方程式 | linear differential equation of high order 高阶线性微分方程
-
differential form:微分形式
微分形式(differential form) 是多变量微积分,微分拓扑和张量分析领域的一个数学概念. 现代意义上的微分形式,及其以楔积和外微分结构形成外代数的想法,都是由著名法国数学家埃里.卡当(Elie...
-
differential operator:微分演算子,微分作用素
differential of higher order 高階微分 | differential operator 微分演算子,微分作用素 | differential permeability 微分透磁率
-
differentiator:微分器微分电路差动轮
differentiator 微分器 | differentiator 微分器微分电路差动轮 | differentiator 微分器微分电路微分元件
-
numerical differentiation:数值微分,数值微分法
numerical differential 数字微分 | numerical differentiation 数值微分,数值微分法 | numerical digit 数位
-
elliptic partial differential equation:椭圆型偏微分方程,椭圆型微分方程
elliptic parallel 椭圆纬线 | elliptic partial differential equation 椭圆型偏微分方程,椭圆型微分方程 | elliptic partial differential operators 椭圆型偏微分算子
-
derivative action time:微分作用时间,微分动作时间
derivative action gain ==> 微分作用增益 | derivative action time ==> 微分作用时间,微分动作时间 | derivative control ==> 导数调节