- 相关搜索
- 可度量化群
- 可度量化的一致空间
- 乌里申度量化定理
- 伪可度量化的一致空间
- 更多网络例句与度量化相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In chapter 5,we introduce the De Morgan algebra of metric and investigate the pseudo-metric Uniformity and the pseudo-metric topology and the separation axioms in De Morganalgebra of metric.We establish the Baire category theorem and the Banach contraction theo-rem,the Edelstein contraction theorem and other fixed quasi-atom theorems in De Morganalgebra of metric.In final,we give a sufficient condition for the metrization of a De Morganalgebra of topology.
在第五章里,我们地德摩根代数中引进了伪度量,探讨了伪度量一致和伪度量拓扑以及德摩根度量代数的分离公理,得到了Baire范畴定理、Banach收缩定理、Edelstein收缩定理以及其它不动拟原子定理,最后给出一个德摩根拓扑代数可度量化的充分条件。
-
It is shown that the enroll decision is being maked in a barycentric coordinates system of property polyhedron that can contain both of the psychological barycenter of theachcrs and the matriculates.
它是对笛氏坐标施行"截取"和"压缩"操作后构建起来的。它提供了刻划主体心理感觉的度量化标准和描述判断决策过程的思维——数学坐标,是存在于人类心理上的一个认知结构。
-
As applications of the imbedding theorem, a fuzzy version of the well-known Urysohn metrizable theorem and the general theory of the fuzzy Stone-Cech compactification are given.
最后作为嵌入定理的应用,得到了不分明Urysohn度量化定理并完成了不分明Stone-Cech紧化的一般理论。
-
Three counter-examples of topological space are proposed in this study: There are two metric spaces, X and Y, in which and are isometric, whileand are not isometric; Non-metric tight regular space is a counter-example of the separation of topological space; No non-zero continuous linear functionals of the linear topological space is a counter-example of linear topological space.
这里给出三个反例,存在两个度量空间X与Y,使X^2与Y^2等距而X与Y并不等距是拓扑空间中的反例;存在不可度量化的紧的完全正规空间是拓扑空间分离性的反例;不存在非零连续线性泛函的线性拓扑空间是线性拓扑空间的反例。
-
Firstly,we prove that the open mapping theorem to situations where spaces are normed and the graphs of convex maps are complete.
其次,我们还推广了在可度量化拓扑线性空间中,完备图的线性映射是开映射的结果。
-
The measurement in set theory, the properties of Metric Space, Measurement Topology, Measurable Space, Perfect Metric Space and its application in first order circuit are explored in this paper.
本文论述了集合上的度量、度量空间的性质、度量拓扑、可度量化空间、完备度量空间、及一阶电路中的度量空间。
-
Metrizable uniform.
space 可度量化一致空间。。
-
The results prove that T*1 S-closed space and T2 S-closed space are identical and that the regular S-closed space and normal S-closed space are the same. Therefore, to make T*1 space X become the complete conditions of S-closed space is the X extremely unconnected H-closed space, while S-closed space X can be measured as the complete condition X of S-closed T1 normal (A1) space.
首先讨论了S-闭空间的分离性,证明T*1型的S-闭空间与T2型S-闭空间是相同的,正则的S-闭空间与正规的S-闭空间是相同的,从而得到要使T*1型空间X成为S-闭空间的充要条件是X为极不连通的H-闭空间, S-闭空间X可度量化的充要条件是X为S-闭的T1型正则(A1)空间。
-
The L-fuzzy unit interval and the L-fuzzy real line are pointwise uniformizable.
不分明单位区间和不分明实直线都可点式伪度量化。
-
For a picture reconstructed from quantized samples to be acceptable, it may be necessary to use 100 or more quantizing levels.
为了保证量化后图像的质量,灰度量化等级要大小等于100。
- 更多网络解释与度量化相关的网络解释 [注:此内容来源于网络,仅供参考]
-
metrizable group:可度量化群
metrizable 可度量化的 | metrizable group 可度量化群 | metrizable uniform space 可度量化一致空间
-
metrizable uniform space:可度量化一致空间
metrizable group 可度量化群 | metrizable uniform space 可度量化一致空间 | metrization 度量化
-
metrizable:可度量化的
metrizability 可度量性 | metrizable 可度量化的 | metrizable group 可度量化群
-
metrizable:可度量化
可定义性|definability | 可度量化|metrizable | 可度量性|metrizability
-
metrizable space:可度量化空间
可度量化的 metrizable | 可度量化空间 metrizable space | 度量化 metrization
-
completely metrizable space:完全可度量化空间
prime cement 打底胶浆 底浆 初层 | completely metrizable space 完全可度量化空间 | antaefixae 互檐饰
-
metrization theorem of urysohn:乌里申度量化定理
metrization 度量化 | metrization theorem of urysohn 乌里申度量化定理 | microlocal analysis 微局部分析
-
metrization:度量化
metrizable uniform space 可度量化一致空间 | metrization 度量化 | metrization theorem of urysohn 乌里申度量化定理
-
pseudometrizable uniform space:伪可度量化的一致空间
pseudometric uniformity 伪度量一致性 | pseudometrizable uniform space 伪可度量化的一致空间 | pseudonorm 伪范数
-
quantify knowledge complexity:量化知识复杂度
自由量詞合取範式 quantifier-free conjunctive normal form | 量化知識複雜度 quantify knowledge complexity | 分位數 quantile