- 更多网络例句与广义导数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Further, with the help of Riccati equations, an infinite number of conservation laws for the solton hierarchy are deduced. For the sake of simplicity, taking the general TD hierarchy as an illustrative example, we prove that its 2×2 Lenard pair of operators forms a Hamiltonian pair. Thus the isospectral evolution TD hierarchy is the general Hamiltonian system and possesses the Bi-Hamiltonian structures and Multi-Hamiltonian structures. By using the method of derivation of functional under some constraint condition, a complete one-to-one correspondence between the Hamiltonian functions of the hierarchy and its conservation density functions can be built. These results can also be applied to the isospectral evolution soliton hierarchy of this paper. Finally, there's a gauge transformation between the spectral problem of this paper and the AKNS system. Moreover, the potentials in these spectral problems satisfy the general Miura transformation, the corresponding relationship between the two soliton hierarchies is also given.
进一步本文还通过特征函数的组合关系所满足的Riccati方程,得到了该等谱方程族的无穷多个守恒律;为简便起见,本文以广义TD族为例,由它的2×2 Lenard算子对的性质证明了此算子对为Hamilton算子对,这说明广义TD族是广义Hamilton系统且具有Bi-Hamilton结构和Multi-Hamilton结构;进而利用它的依赖于谱参数的一般守恒密度的积分在约束条件下求泛函导数的方法,得到了广义TD族的Hamilton函数与守恒密度之间的对应关系,这些性质对于由本文提出的2×2谱问题所导出的等谱孤子族仍成立;另外此谱问题与AKNS系统存在着规范变换,位势之间有广义Miura变换,而孤子方程之间也满足一定的等价关系。
-
Theformulation of this model is simpler and the generalized derivative is easier tocompute,so the method is easier to implement.
这不仅使方法列式更加简洁,而且广义导数的计算也更加容易,使算法更便于实现。
-
Generalized derivative ; basic deformation ; generalied equilibrium differential equation
广义导数;基本变形;广义平衡微分方程
-
The derivatives of the nonsmooth equations are computed to make the generalized derivative matrix nonsingular. Then the nonsmmoth damped Newton method is used to solve them.Analytic solutions of the KdV equation with variable coefficients: Shallow water wave problems belong to problems of free surface wave, and can be molded by the nonsmooth equations model given above in principle.
在前面建立的非光滑方程组数学模型和固定网格法基础上,利用广义导数的概念给出了求解渗流自由面的一种新方法-----非光滑阻尼牛顿法,该法是对非光滑方程组求导,适当的处理广义导数矩阵使其非奇异,利用非光滑牛顿法求解。
-
Finally, in the third section, by constructing some functional which similar to the conservation law of evolution equation and the technical estimates, we prove that in the inviscid limit the solution of generalized derivative Ginzburg—Landau equation converges to the solution of derivative nonlinear Schrodinger equation correspondently in one-dimension; The existence of global smooth solution for a class of generalized derivative Ginzburg—Landau equation are proved in two-dimension, in some special case, we prove that the solution of GGL equation converges to the weak solution of derivative nonlinear Schr〓dinger equation; In general case, by using some integral identities of solution for generalized Ginzburg—Landau equations with inhomogeneous boundary condition and the estimates for the L〓 norm on boundary of normal derivative and H〓 norm of solution, we prove the existence of global weak solution of the inhomogeneous boundary value problem for generalized Ginzburg—Landau equations.
第三部分:在一维情形,我们考虑了一类带导数项的Ginzburg—Landau方程,通过构造一些类似于发展方程守恒律的泛函及巧妙的积分估计,证明了当粘性系数趋于零时,Ginzburg—Landau方程的解逼近相应的带导数项的Schr〓dinger方程的解,并给出了最优收敛速度估计;在二维情形,我们证明了一类带导数项的广义Ginzburg—Landau方程整体光滑解的存在性,以及在某种特殊情形下,GL方程的解趋近于相应的带导数项的Schr〓dinger方程的弱解;在一般情形下,我们讨论了一类Ginzburg—Landau方程的非齐次边值问题,通过几个积分恒等式,同时估计解的H〓模及法向导数在边界上的模,证明了整体弱解的存在性。
-
In Part 5, the stability of linear large-scale singular dynamic system is investigated by using the method of vector generalized Lyapunov function and the sum type of scalar generalized Lyapunov function, respectively.
首先研究线性广义系统二次型李雅普诺夫函数的存在性;然后建立按线性近似系统决定非线性广义系统稳定性的准则;进而改进广义李雅普诺夫函数法以研究广义系统的稳定性;最后提出利用非线性函数的偏导数矩阵判别非线性微分-代数系统稳定性的若干简便判据。
-
The Taylor formula holds the very important status in the differential calculus, especially in solves in some concrete problems to have the extremely important application, for instance the proof inequality, the judgment improper integral collects the divergence, asks the function the limit, asks the function the higher order derivative, determines certain complex progressions to collect the divergence, solves certain differential equation, as well as approximate calculation in and so on application, therefore this article will do the thorough research to these seven aspects.
摘 要:泰勒公式在微分学中占有非常重要地地位,尤其在处理1些具体的茄题中有10分重要的应用,比如证明不等式,判断广义积分的敛散性,求函数的极限,求函数的高阶导数,判定某些复杂级数的敛散性,求解某些微分方程,以及近似计算等中的应用,因此本文将对这七个方面做深入的研究。关键词:泰勒公式;不等式;广义积分;极限;高阶导数;复杂级数;微分方程
-
Moreover, A very general optimization problems with a complementarity problem constraint, a inequality and a equality constraints, and an abstract constraint are studied.
最后,我们应用Mordukhovich广义导数方法,在较弱的约束规范性条件—静态条件下,研究当f,g,h,G,H为非光滑函数时,互补约束的优化问题的最优必要性条件。
-
Based on a general parametric eigenstructure assignment result proposed for descriptor linear systems via proportional plus partial derivative state feedback and a result for generalized eigenvalue sensitivity problem of matrix pairs, parametric representation of the closed-loop eigenvalue sensitivities to the perturbed elements in the open-loop system matrices is obtained. An effective algorithm for eigenvalue assignment with minimum sensitivity in descriptor linear systems via proportional plus partial derivative state feedback is then proposed.
摘要基于广义线性系统比例与部分状态导数反馈参数化特征结构配置结果和矩阵对广义特征值灵敏度结果,得到了关于开环系统矩阵中摄动元素的闭环特征值灵敏度的参数表达式,并在此基础上提出了广义线性系统比例与部分状态导数反馈最小灵敏度特征值配置的有效算法。
-
Optimization; parametric quadratic convex programming; set-valued map; directional derivative; linear stability; solution-set map; parametric linear programming; error bound; subdifferential map; lower locally directionally Lipschitzian; upper locally di-rectionally Lipschitzian; locally directionally Lipschitzian; convex function; quasidiferential; kernelled quasidiferential; quasi-kernel; star-kernel; star-diferential; Penot diferential; subderivative; superderivative; epiderivative; set-valued optimization; set-valued analysis; subdifferential; optimization condition;ε-dual; scalization; generalized subconvexlike-cone;ε-Lagrange multiplier
基础科学,数学,运筹学最优化;集值映射;方向导数;线性稳定;最优解集映射;参数线性规划;参数凸二次规划;误差界;次微分映射;下局部方向Lipschitzian;上局部方向Lipschitzian;局部方向Lipschitzian;凸函数;拟微分;核拟微分;拟核;星核;星微分; Penot-微分;上导数;下导数; Epi-导数;集值优化;集值分析;集值映射的次微分;最优性条件;广义锥次类凸;ε-对偶;数乘;ε-Lagrange乘子
- 更多网络解释与广义导数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
generalized derivative:广义导数
generalized coordinates 广义坐标 | generalized derivative 广义导数 | generalized distance 广义距离
-
higher commutator:广义换位子
higher algebra 高等代数 | higher commutator 广义换位子 | higher derivative 高阶导数
-
generalized isoperimetric problem:广义等周问题
广义导数|generalized derivative | 广义等周问题|generalized isoperimetric problem | 广义狄利克雷问题|generalized Dirichlet problem