- 更多网络例句与平均误差相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Comparing by actually measured result,the absolute average errors of tidal frequency of partial tide M\-2,partial ti...
结果计算值与实测值相比,M2 、K1 、O1 分潮振幅的绝对平均误差分别为 3.4 cm、 4 。7cm、 5 。1cm ,相位绝对平均误差分别为 7.1°、 9.3°、 7.2°,在潮波模拟可以接受的误差范围内,模拟的潮波系统与实测的潮波系统符合良好。
-
In this paper ,on one hand ,we establish the weakly asymptotic order of the classical Bernstein interpolation sequence approximate functionin the Wiener space(or 1-fold integrated Wiener space),on the other hand,we discuss the asymptotically order for the average error of Lagrange interpolation sequence, Hermite-Fejer interpolation sequence and Hermite interpolation sequence based on the Chebyshev nodes on the 1-fold integrated Wiener space.
本文一方面确定了经典的Bernstein多项式算子列逼近函数时在Wiener空间(或1-重积分Wiener空间)下的平均误差的弱渐近阶;另一方面确定了基于第一类Chebyshev多项式零点的Lagrange插值算子列、Hermite-Fejer插值算子列和Hermite插值算子列在1-重积分Wiener空间下的平均误差的弱渐近阶。
-
At the same time, the practical implementation of evolutionary algorithm is given in order that evolutionary algorithm is introduced into vector quantizer. In the fourth section the asymptotic theory of vector quantization is studied. Then the partial distortion theorem that when codebook size is large enough, each region of the partition makes an equal contribution to the distortion for an optimal quantizer, which is the key part of vector quantizer is obtained. Finally, the competitive learning algorithm based on the partial distortion theorem is proposed, which introduces the subdistortion of each region into the distortion measure to assure that the subdistortion of each region approximately equals to each other.
第四章详细研究矢量量化的渐近理论,然后得出了矢量量化器设计的核心部分——部分失真定理,当码本尺寸足够大且输出矢量的渐近概率密度与输入矢量的概率密度的幂成比例时,最优量化器划分的各个区域对该量化器的平均误差产生相同的影响,最后提出基于部分失真定理的竞争学习算法,它通过在误差测度中,引入与各区域相关的子误差以保证各区域的子误差近似相等,该算法实现较为简单,在一定程度上确保全局最优。
-
The simulation data show that the average error of land surface temperature is below 0.5℃, and the error of emissivity in band 11~14 is below 0.007(band 11,12)and 0.006 (band 13,14), respectively.
利用辐射传输模型MODTRAN 4模拟数据进行反演及验证分析,结果表明,神经网络能够提高算法的精度和实用性,反演的地表温度平均误差为0.5 ℃,反演的发射率平均误差分别在0.007(11、12波段)和0.006(13、14波段)以下。
-
We gain the distributing instance as a whole by the spatial analyse of the daily、 mensal and annual precipitation.Then, we adopt mean error、 mean absolute error、 mean relative error、 and the root mean squared interpolation error and the correlative coefficient as the determinant standard of interpolation effect. The results show that the mensal precipitation effect of SIA is the best, and the daily precipitation effect is worse reversely.
然后,对年降水量、月降水量以及日降水量的SIA结果采用平均误差、平均绝对误差、平均相对误差、插值平均误差平方和的平方根误差以及相关系数作为判定插值效果的标准,并得到以下结果:月降水量的SIA效果最好,日降水的相对较差。
-
From our results we know that the average error of the Lagrange interpolation sequence and the Hermite interpolation sequence based on the Chebyshev nodes in the 1-fold integrated Wiener space equal weakly to the average error of their corresponding optimal approximation polynomial in the 1-fold integrated Wiener space,and as a kind of information-based operation,they have simple form and their recover functions are polynomials,in the 1-fold integrated wiener space,their average error equal weakly to the corresponding minimal information radius whose permissible information operators class is function values.
通过我们的结果可以知道,基于第一类Chebyshev多项式零点的Lagrange插值算子列和Hermite插值算子列在1-重积分Wiener空间下的平均误差弱等价于相应的最佳逼近多项式在1-重积分Wiener空间下的平均误差,并且作为形式简单且恢复函数为多项式的一种信息基算法,其在1-重积分Wiener空间下的平均误差弱等价于相应的以函数值计算为可允许信息算子的最小平均信息半径。
-
Results With manual cutter, the errors of conformal plumbic blocks were 2.355 mm. With automatic cutter, the errors of conformal plumbic blocks were 1.425 mm.
结果:手动切割机制作的适形铅挡块平均误差为2.355mm,自动切割机制作的适形铅挡块平均误差为1.425mm。
-
The error of ultimate load prediction of un-reinforced brick arch: brick arch will be simplified to portal frame are used to preliminary estimation, in-plane stiffness which only provides from vertical frame, the average error between -20~20%;Structure program are used to simulate brick arch with shell elements analyzed, the average error between -15%~10%.
未补强砖拱,其水平极限荷载预测之误差:推估公式中将砖拱简化为门形构架,其面内刚由垂直构材提供,平均误差在-20~20%之间;结构分析程式中将砖拱以壳元素模拟,平均误差在-15~10%之间。
-
The accuracy of this semi-analytical inversing model was validated by using the larger-scale in-situ data, and the result shows that the correlation is 0.84 with the relative error 22.6% and absolute error 4.7 m.
利用大量实测透明度资料对模式进行了验证,结果表明遥感反演透明度与实测透明度的相关系数为0.84,绝对平均误差为4.17m,相对平均误差为22.6%。
-
It has been validated that the prediction accuracy is enhanced and the average errors of the yield strength and strain hardening exponent are 1.6% and 12.6%, respectively.
通过模拟验证,此方法提高了计算精度并扩大了材料的计算范围。所获得的屈服强度平均误差是1.6%,应变硬化指数的平均误差12.6%。
- 更多网络解释与平均误差相关的网络解释 [注:此内容来源于网络,仅供参考]
-
average error:平均误差
A .造成径向运动误差(Radial Error Motion)的原因:B .造成径向平均误差(Average Error)的原因:C .造成径向非同步误差(Asynchronous Error)的原因:2. 轴承缺陷(Bearing defects)例如:5. 机台内部振动源(Self excited motion)引起的:
-
average error:平均误差=>平均誤差
average energy 平均能量 | average error 平均误差=>平均誤差 | average expenditure 平均支出
-
algebraic average error:代数平均误差
algebraic approach restoration 图像代数修复 | algebraic average error 代数平均误差 | algebraic closure 代数闭包
-
method of average error:平均误差法
误差 error | 平均误差法 method of average error | 恒定误差 constant error
-
average error,mean error:平均误差
平均停留时间|mean residence time | 平均误差|average error, mean error | 平行反应|parallel reaction
-
mean error:平均误差
mean ergodic theorem 平均脯历经定理 | mean error 平均误差 | mean free path 平均自由程
-
mean error:平均机差;平均误差
平均偏差 mean deviation | 平均机差;平均误差 mean error | 半(数)致死量 mean lethal dose; LD50
-
arithmetical mean error:算术平均误差
arithmetical error 算术误差运算误差 | arithmetical error 运算误差 | arithmetical mean error 算术平均误差
-
geometric mean error:几何平均误差
geometric freeboard 型干舷 | geometric mean error 几何平均误差 | geometric pitch ratio 几何螺距比
-
unbalanced error:不平均误差
"unattended station","遥管站" | "unbalanced error","不平均误差" | "unbalanced poly phase","不平均多相制"