- 更多网络例句与幂零群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this project we obtain a sufficient and necessary condition for a finite group G has a p-block with a normal p-subgroup D as a defect group, a necessary and sufficient condition for a group which is an extension of a nilpotent group by an abelian group has a p-block of defect zero.
本项目中我们给出了正规p-子群是有限群G的亏群的一个充要条件和幂零群被交换群扩张的群有亏零块的充要条件。
-
Next we obtain some group theoretic conditions for the existence of p-blocks with defect 0 in some special groups, for instance, in an extension group of a nilpotent group by a abelian group, in a p-nilpotent group, in a group with all subgroups of order p are conjugate, and so on.
其次我们给出了一些特殊群的亏零块存在的群论条件,如幂零群被交换群扩张的群,p—幂零群,p—阶子群均共轭的群等。
-
Dade made enormous researches on Coleman automorphism of a finite group and obtained a lot of initial results,especially proved that Coleman outer automorphism group is nilpotent.
E.C.Dade通过对有限群的Coleman自同构的大量研究得到了一系列开创性的结果,最重要的是证明了Coleman外自同构群是幂零群。
-
In chapter 1 ,on one hand ,we give some sufficient conditions for a finite group to be supersolvable and nilipotent by using the properties of π-supplemented subgroups;For example: Theorem 3 Let G be a group, 2 ∈π, if every subgroup of G of prime order is contained in SE, every cyclic subgroup of G of order 4 is π-supplemented in G, then G will be supersolvable.
在第一章中,一方面我们利用π-可补子群的性质给出了有限群为超可解群及幂零群的若干充分条件;例如:定理3设G是群,2∈π,如果G的每个素数阶子群包含在SE中,G的每个4阶循环子群在G中π-可补,则G为超可解群。
-
Theorem 7 Let G be a group, if every subgroup of G of prime order is contained in Z_∞,2 ∈π, every cyclic subgroup of G of order 4 is π-supplemented in G,then G will be nilpotent.
定理7设G是群,G的素数阶子群包含在Z_∞中,2∈π,如果G的每个4阶循环子群在G中π-可补,则G为幂零群。
-
Let H be a normal subgorup of a finite group G such that G/H is nilpotent.
2假设H是有限群G的一个正规子群使得G/H是幂零群。
-
Nilpotency of a table algebra depends on that of their table subsets and quotient subsets, which is not fully corresponding to extension problems of nilpotent groups.
同时会发现该条件在表代数幂零性的判别方面并不完全对应于幂零群的中心扩张。
-
The reader will need to know some basic finite group theory: the Sylow theorems and how to use them and some elementary properties of permutation groups and solvable and nilpotent groups.
读这本书之前,读者需要一些有限群论的基本知识,如Sylow定理及其应用,置换群,可解群和幂零群的基本性质等等。
-
By using Jordan-Hlder type theorem of table algebras, we prove that table algebras satisfying nilpotent extension condition are nilpotent, which does not correspond to extension problems of nilpotent groups exactly.
本文研究了幂零表代数的一个有趣的性质,利用表代数的Jorda-Hlder型定理,证明了表代数满足幂零被幂零扩张仍是幂零的,但有限幂零群没有这样的扩张。
-
Finite group; conditional c-normal; solvable group; p-supersolvable group; p-nilpotent group
基础科学,数学,代数、数论、组合理论有限群;条件c-正规子群;可解群; p-超可解群; P-幂零群
- 更多网络解释与幂零群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
finite nilpotent group:有限幂零群
finite multiplier 有限乘数 | finite nilpotent group 有限幂零群 | finite number plane 有限数平面
-
nilpotent Lie algebra:幂零李代数
幂零理想|nilpotent ideal | 幂零李代数|nilpotent Lie algebra | 幂零群|nilpotent group
-
nilpotent element:幂零元素
nilpotent algebra 幂零代数 | nilpotent element 幂零元素 | nilpotent group 幂零群
-
nilpotent element:幂零元
幂零线性变换|nilpotent linear transformation | 幂零元|nilpotent element | 幂群|power group
-
nilpotent group:幂零群
Furstenberg 和 Weiss 的反例,及Conze和 Lesigne的结果,逐渐导致一个结论,即这些特征因子应该由一个非常特殊的(代数型的)保测体系,即与幂零群(nilpotent group)相联系的零系统(nilsystem),来描述.
-
local nilpotent group:局部幂零群
类:class | 局部幂零群:local nilpotent group | 幂零阵的标准形:nilpotent matrices
-
class of nilpotent group:幂零群类
理想(子环)族 class of ideals | 幂零群类 class of nilpotent group | 二次型类 class of quadraticforms
-
nilpotent analytic group:幂零解析群
幂零环|nilpotent ring | 幂零解析群|nilpotent analytic group | 幂零矩阵|nilpotent matrix
-
connected nilpotent Lie group:连通幂零李群
connected networks | 联接网络 | connected nilpotent Lie group | 连通幂零李群 | connected nilpotent | 连通幂零
-
nilpotent ideal:幂零理想
nilpotent group 幂零群 | nilpotent ideal 幂零理想 | nilpotent matrix 幂零矩阵