- 更多网络例句与幂零的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Theorem and Burnside Theorem about p-nilpotence.
和Burnside关于p-幂零的定理。
-
If every minimal p-subgroup of G is containedin Z, every cyclic subgroup of order 4 of G is conditional c-normal in G, then G isp-nilpotent.Theorem 2.3.9 Let p be a fixed prime.
定理2.3.9对某个固定的素数p,设G的每个极小p-子群包含于Z,4阶循环子群在G中条件c-正规,则G是p-幂零的。
-
This condition is much easier than that given by the Maximum principle in many cases.
最后,对于系统Lie代数为1或2幂零的情况下一类非线性最优控制问题,给出了解的必要条件。
-
We obtain some results on solvability and nilpotency of finite groups by the 9— pairs of 2—maximal subgroups.
利用2-极大子群的θ-子群偶得到了一系列有限群可解,幂零的结果。
-
In this paper we give the concept ob approximation nilpotent alternate algebra,and sduty the relation ot nipotency and solvability to the approximation nilpotency .
在这篇文章中给出了交错代数的近似幂零性的概念。并且,讨论了交错代数的幂零性、可解性与近似幂零性之间的关系。
-
Finally, we study the PLDP(n, 2) and strongly nilpotent Jacobian matrices, and we prove that if the nilpotency index of JH for a power-linear map H of degree 2 is less than 4, then JH is strongly nilpotent, and consequently the rows of JH are linearly dependent.
此外,我们特别对线性多项式2次幂映射的相关性问题进行了讨论,为此,对强幂零的Jacobi矩阵进行了研究,刻画了Gorni-Zampieri对的幂零指数之间的关系,并证明了Gorni-Zampieri对保持强幂零性。
-
In the present paper,we investigate solvable radicals and Hopkins nilpotent radicals for Lie triple systems and prove that both radicals are invariant under actions of deriva- tions.
本文讨论李三系的可解根基和Hopking幂零的某些性质及导子作用下的不变性,讨论了李三系次理想的某些性质,证明了李三系为幂零的当且仅当每个子系都是次理想。
-
By using Jordan-Hlder type theorem of table algebras, we prove that table algebras satisfying nilpotent extension condition are nilpotent, which does not correspond to extension problems of nilpotent groups exactly.
本文研究了幂零表代数的一个有趣的性质,利用表代数的Jorda-Hlder型定理,证明了表代数满足幂零被幂零扩张仍是幂零的,但有限幂零群没有这样的扩张。
-
In this paper, by using conditional cnormalityof some special subgroups(such as minimal subgroups, maximal subgroups, Sylowsubgroups, maximal subgroups of Sylow subgroups)of G, we obtain some sufficient or necessaryconditions for a finite group to be solvable, supersolvable, nilpotent. Some previouslyknown results are generalized.
本文结合有限群的某些特殊子群(如,极小子群,极大子群,Sylow子群,Sylow子群的极大子群)的条件c-正规性来研究有限群的可解性,超可解性,幂零性,得到了有限群可解,超可解,幂零的若干充分和充要条件,推广了有限群的一些结果。
-
In the fifth chapter,we study dipolarizations in some quadratic Lie algebras.Inthe first section,we obtain some results on the classification of dipolarizations in gen-eral quadratic Lie algebras,and prove that there exist dipolarizations in the solvablequadratic Lie algebras whose Cartan subalgebras consist of semisimple elements.
第五章讨论了某些二次李代数的双极化,在第一节中,我们给出了二次李代数的双极化的一些分类结果;特别证明Cartan子代数是由半单元组成的二次李代数上存在双极化,第二节确定了四维扩张Heisenberg代数的所有双极化,在第三节中,我们构造了2n+2维扩张Heisenberg代数的六类双极化,我们发现两个不同于半单李代数情形的有趣事实:(1)在扩张Heisenberg代数上同时存在对称和非对称双极化;(2)对应于扩张Heisenberg代数的双极化的特征元有的是半单的有的是幂零的。
- 更多网络解释与幂零的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
generated hereditary class:生成的可传类
generalized nilpotent class 广义幂零类 | generated hereditary class 生成的可传类 | generated monotone class 生成的单调类
-
Nilotic:尼罗河的
nill 不想 | Nilotic 尼罗河的 | nilpotent 幂零的
-
Nilotic:尼罗河流域的
nilotic 尼罗河的 | nilotic 尼罗河流域的 | nilpotent 幂零
-
Nilotic:尼罗河的/尼罗河流域的
nilometer /水位计/ | nilotic /尼罗河的/尼罗河流域的/ | nilpotent /幂零/
-
locally nilpotent algebra:局部幂零代数
局部连通[的]|locally connected | 局部幂零代数|locally nilpotent algebra | 局部幂零根|locally nilpotent radical, Levitzki radical
-
properly nilpotent element:强幂零元素
眞包含 properly include | 强幂零元素 properly nilpotent element | 适定的 properly posed
-
nilpotent group:幂零群
Furstenberg 和 Weiss 的反例,及Conze和 Lesigne的结果,逐渐导致一个结论,即这些特征因子应该由一个非常特殊的(代数型的)保测体系,即与幂零群(nilpotent group)相联系的零系统(nilsystem),来描述.
-
local nilpotent group:局部幂零群
类:class | 局部幂零群:local nilpotent group | 幂零阵的标准形:nilpotent matrices
-
nilpotent:幂零的
Nilotic 尼罗河的 | nilpotent 幂零的 | nim 偷
-
linear mapping preserving zero product:保零积的线性映射
保核值映射:Kernel-range preserving mapping | 保幂等的线性映射:linear mapping preserving idempotents | 保零积的线性映射:linear mapping preserving zero product