英语人>词典>汉英 : 幂函数 的英文翻译,例句
幂函数 的英文翻译、例句

幂函数

词组短语
power function
更多网络例句与幂函数相关的网络例句 [注:此内容来源于网络,仅供参考]

By discussing the position hypothesis of fractional-dimension derivative about general function and the formula form the hypothesis of fractional-dimension derivative about power function, the concrete equation formulas of fractional-dimension derivative, differential and integral are described distinctly further, and the difference between the fractional-dimension derivative and the fractional-order derivative are given too. Subsequently, the concrete forms of measure calculation equations of self-similar fractal obtaining by based on the definition of form in fractional-dimension calculus about general fractal measure are discussed again, and the differences with Hausdorff measure method or the covering method at present are given. By applying the measure calculation equations, the measure of self-similar fractals which include middle-third Cantor set, Koch curve, Sierpinski gasket and orthogonal cross star are calculated and analyzed.

通过讨论一般函数的分维导数的位置假设及幂函数的分维导数的形式假设,进一步明晰了幂函数的分维导数、分维微分及分维积分的具体方程形式,给出分维导数与分数阶导数的区别,随后讨论了基于一般分形测度的分维微积分形式定义导出的自相似分形的测度计算方程具体形式,给出了其与目前 Hausdorff 测度方法的区别,并对包括三分 Cantor 集合、 Koch 曲线、 Sierpinski 垫片及正交十字星形等自相似分形在内的测度进行了计算分析。

The results showed that there was power function relationship between the capillary water rise height and groundwater supply quantity and the time. There was linear function relationship between capillary water rise height and groundwater supply quantity and a power function between them and the time. There was linear function relationship between the capillary water rise velocity and the groundwater supply rate. Parameters could be calculated by measured data, which showed that it is possible to simulate capillary water rise process of homogeneous soil by Green-Ampt model.

结果表明:均质土毛管水上升高度和地下水补给量均与时间之间为幂函数关系,毛管水上升速度和地下水补给速率也均与时间呈幂函数关系,毛管水上升高度与地下水补给量之间呈明显的线性关系,毛管水上升速度与地下水补给速率也呈线性关系;通过试验资料可以推求有关参数;说明入渗条件下的Green-Ampt模型用于模拟均质土的毛管水上升过程是可行的。

We provide a substitution box, exponential permutation which has much measurable security, and give a enumerating result and a fast algorithm of calculating such permutation. An almost perfect nonlinear exponential permutation with high algebric degree is proposed. with some discussion on how to select the parameters of such permutation. The experimental result shows us a conjecture that there exists no such permutation over even dimensional space. As a way of generating substitution boxes, we briefly point out the cryptographic weakness of the exponential functions derived from such permutation. We also present two new cryptographic indexes, fixed point and cyclic structure, on which we investigate the performance of such permutation. Finally, we give a viewpoint about the application of correlation immune functions in designing substitution boxes.

提供了一种可度量安全强度的代换盒-幂置换;详细阐述了幂置换的实现和计数问题;给出了一种计算幂置换的快速算法;从几乎完善非线性幂置换角度讨论了幂置换参数的选取,并提出了一种高次几乎完善非线性置换;通过试验给出了关于偶数维空间上几乎完善非线性幂置换的一个猜想;简要给出了由幂置换派生出的幂函数的密码局限性;针对幂置换,提出了两个密码安全指标:不动点和循环结构;证明了幂置换在这两个指标下的密码性能;简要讨论了相关免疫函数与代换盒设计的关系。

This function is not a practical exponentiation routine, since it handles only positive powers of small integers, but it's good enough for illustration.

该函数并非一个实用的求幂函数,它只能处理较小的整数的正整数次幂,但这对于说明问题己足够了。

Based on the analysis of some aspects, such as the approximative algorithm of FOC, the Tustin transform theory and its generating function formula's character, the convergence guarantee of binomial power function by Maclaurin expanding, and the consideration of the limitation of conventional methods, an improved method is proposed to compute the numerical evalution of FOC using PSE and Tustin transform and is further applied to solving the linear FOS.

以分数阶算子近似方法的分析研究为基础,基于Tustin变换理论及其用于分数阶算子的离散生成函数公式特点,利用二项式幂函数的Maclaurin展开能够保证收敛的特性,考虑常用算法的局限性,提出了一种改进的基于幂级数展开和Tustin变换的分数阶运算方法,并应用于线性分数阶系统的求解,给出了递推算法的详细推导。

In order to solve the derivation of power exponent function,this paper has studied the derivation regulations on power function from the perspective of the differentiation of multi-variable function and in accordance with the derivation laws on multi-variable complex function.

为解决幂指函数的求导问题,从多元函数微分法的角度出发,根据多元复合函数的求导法则,探索幂指函数求导的规律,并揭示了幂指函数与幂函数及指数函数导数间的关系,给出了幂指函数求导的另一种方法。

Results of analysis show that Generalized Paris Law can consider the complex crack propagation in the material of the pavement structure. The fatigue life of the pavement increases with increasing thickness of surface layer in a power function. Use of a thicker surface layer may extend the service life of the asphalt pavement. The fatigue life increases with decreasing modulus of surface layer in a power function with a negative exponent. However, since reduced modulus would scarify the structural strength and might cause rutting-related distress, caution should be taken when using low modulus materials for improving fatigue performance of asphalt pavements. The fatigue life increases with increasing modulus of base material in a power function. However, the fatigue life can not infinitely increases with increasing modulus of the base.

计算与分析表明:广义Paris公式可以考虑沥青路面结构内材料复杂的裂缝扩展:沥青面层的疲劳寿命随着面层厚度的增加以幂函数的形式增加,适当增加沥青面层厚度可以提高路面的使用寿命;沥青面层的疲劳寿命随着面层材料模量的降低以负指数的幂函数形式增加;由于材料模量的降低将牺牲路面的整体强度并可能引起路面车辙类损坏,以此提高疲劳寿命的方法应慎重对待;沥青面层的疲劳寿命随着基层材料模量的增加呈幂函数的形式增加,但由疲劳方程可以看出,寿命并不是随基层材料模量的增加而无限的增加,疲劳曲线在经过一个上升段后,逐渐趋于一个常数值,这说明,这时基层模量对寿命已不作关键性贡献;随着底基层厚度的增加,面层的疲劳寿命近似地呈线性函数增加,但效果并不很明显。

For this purpose, from 2004 to 2006 Professor Zhang create uniform limit power function space and strong limit power function space that are large, nice spaces.

Sarason在1984年提出了遥远概周期函数和缓慢振动函数并提出了一个公开问题,本文对这两个函数主要做了以下工作第一,将在一维空间中定义的遥远概周期函数和缓慢振动函数推广到高维空间,并指出其与一致极限幂函数和强极限幂函数等新的极限幂函数的关系。

The neutron emission intensities of spent fuel for different initial enrichment and different burnup and different cooling time were calculated, the power function relationship between burnup and neutron emission intensity was decided and verified after analysis, and the factors that affected the power function relationship were studied.

计算了不同初始富集度、不同燃耗、不同冷却时间的乏燃料的中子发射强度,经分析,证实了燃耗与中子发射强度间存在的幂函数关系,并对影响幂函数关系的各种因素进行了研究。

At the same time, according to the related theories, theoretical relation of soil water profile was established under the condition of ponded infiltration and limited soil redistribution, the results were verified with measured data and proved to be reasonable.

此外,研究表明,导热率与土壤含水率、土壤水吸力、含盐浓度之间均存在良好的幂函数关系;在取得一定温控条件下的土壤水分与温度分布实测资料的基础上,根据Philip经验方程,通过差分法计算得出温差作用下的水分扩散率,该参数可表示为温度的幂函数形式。

更多网络解释与幂函数相关的网络解释 [注:此内容来源于网络,仅供参考]

power associative algebra:幂可结合代数;幂可缔代数

位势论 potential theory | 幂可结合代数;幂可缔代数 power associative algebra | 幂函数;检定力;功效 power function

domain of definition of the function:函数值域

domain of definition of the function 函数值域 | power function 幂函数 | polynomial 多项式

exponential function:指数函数,幂函数

2378. exponential flux rise 通量指数上升 | 2379. exponential function 指数函数,幂函数 | 2380. exponential integral function 指数积分函数

exponential integral:指数积分,幂积分

exponential function 指数函数,幂函数 | exponential integral 指数积分,幂积分 | exponential integral function 指数积分函数

Function representation of particle size distribution power-function--Power-fantion:颗粒粒度分布的函数表征 幂函数

医用有机硅材料生物学评价试验方法 Organic silicon ma... | 颗粒粒度分布的函数表征 幂函数 Function representation of particle size distribution power-function--Power-fantion | 比长基线测量规范 Specificati...

power function:幂函数;功效函数

power exponent 幂指数 | power function 幂函数;功效函数 | power mean 幂平匀

power function law:幂函数定律

power function 幂函数 | power function law 幂函数定律 | power motive 权力动机

power mean:幂平匀

power function 幂函数;功效函数 | power mean 幂平匀 | power of set 集的势

power reciprocity law:幂互反律

幂函数|power function | 幂互反律|power reciprocity law | 幂集|power set

float SinD:求正弦函数

float CosD /*求余弦函数*/ | float SinD /*求正弦函数*/ | float Power /*求取以e为底的幂函数*/