英语人>词典>汉英 : 左拟群 的英文翻译,例句
左拟群 的英文翻译、例句

左拟群

词组短语
left quasigroup
更多网络例句与左拟群相关的网络例句 [注:此内容来源于网络,仅供参考]

A magma ''Q'' is a quasigroup precisely when these operators are bijective. The inverse maps are given in terms of left and right division by

原群 ''Q''是拟群当且仅当这两个变换是双射变换,而且它们的逆变换给出了右除和左除变换

On the basis, three equivalent statements are obtained. Let S be a semigroup with left central idempotents, then (1) S is a quasi-right semigroup;(2) S is a quasi-completely regular, and RegS is an ideal;(3) S is a nil-extension of strong semilattice of right semigroup.

在此基础上得到了3个等价命题:若S为具有左中心幂等元半群,则(1) S为拟右半群;(2) S为拟完全正则的,RegS为S的理想;(3) S为右群强半格的诣零理想扩张。

The necessary and sufficient conditions for the semidirect product of S and T to be Clifford eventually semigroup are given.

给出了两个左正则拟半群S和T的半直积S×αT和圈积SωXT是左正则拟半群的充分必要条件。

By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup;(2) RegS is a completely regular semigroup;(3) R(superscript *) is the smallest semilattice congruence on S;(4) Each R-class T(subscript α) on RegS is a right group;(5) T(subscript α)G(subscript α)×E(subscript α), where G(subscript α) is a group, E(subscript α) is a right zero semigroup.

利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1) S为拟完全正则半群;(2) RegS为完全正则半群;(3) R为S上的最小半格同余;(4) RegS上的每个R-类T为右群;(5) TG×E,其中G为群,E为右零半群。

更多网络解释与左拟群相关的网络解释 [注:此内容来源于网络,仅供参考]

left quasi simple ring:左拟单环

left quasi regularity 左拟正则性 | left quasi simple ring 左拟单环 | left quasigroup 左拟群

left quasigroup:左拟群

left quasi simple ring 左拟单环 | left quasigroup 左拟群 | left quotient 左商

left quotient:左商

left quasigroup 左拟群 | left quotient 左商 | left quotient field 左商域