- 更多网络例句与左拟群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
A magma ''Q'' is a quasigroup precisely when these operators are bijective. The inverse maps are given in terms of left and right division by
原群 ''Q''是拟群当且仅当这两个变换是双射变换,而且它们的逆变换给出了右除和左除变换
-
On the basis, three equivalent statements are obtained. Let S be a semigroup with left central idempotents, then (1) S is a quasi-right semigroup;(2) S is a quasi-completely regular, and RegS is an ideal;(3) S is a nil-extension of strong semilattice of right semigroup.
在此基础上得到了3个等价命题:若S为具有左中心幂等元半群,则(1) S为拟右半群;(2) S为拟完全正则的,RegS为S的理想;(3) S为右群强半格的诣零理想扩张。
-
The necessary and sufficient conditions for the semidirect product of S and T to be Clifford eventually semigroup are given.
给出了两个左正则拟半群S和T的半直积S×αT和圈积SωXT是左正则拟半群的充分必要条件。
-
By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup;(2) RegS is a completely regular semigroup;(3) R(superscript *) is the smallest semilattice congruence on S;(4) Each R-class T(subscript α) on RegS is a right group;(5) T(subscript α)G(subscript α)×E(subscript α), where G(subscript α) is a group, E(subscript α) is a right zero semigroup.
利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1) S为拟完全正则半群;(2) RegS为完全正则半群;(3) R为S上的最小半格同余;(4) RegS上的每个R-类T为右群;(5) TG×E,其中G为群,E为右零半群。
- 更多网络解释与左拟群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
left quasi simple ring:左拟单环
left quasi regularity 左拟正则性 | left quasi simple ring 左拟单环 | left quasigroup 左拟群
-
left quasigroup:左拟群
left quasi simple ring 左拟单环 | left quasigroup 左拟群 | left quotient 左商
-
left quotient:左商
left quasigroup 左拟群 | left quotient 左商 | left quotient field 左商域