- 更多网络例句与展开定理相关的网络例句 [注:此内容来源于网络,仅供参考]
-
To make our approach to be practical, we also discuss the asymptotic expansion of the operator in chapter 6 which is based on the non-abelian Stokes theorem.
但是由于格点上的算符是path-order变量的乘积,并且其构成非常复杂,按照正常的方式展开实际上是不可能的,为了使我们的算法实际可行,本文接着讨论了格点上算符的渐近展开问题,并且给出了基于non-abelStokes定理的方法,这种方法克服了以前各种办法的缺点,并且简单可行,适用于任意的Wilson算符。
-
If the power series ∑anxn an ∑anxn and ∑bnxn satisfy the condition r =∑bn xn, we obtain the twin combinatorial identity theorem between the sequences {an} and bn}.We also obtain some specific twin combinatorial identities by using the expansion on the binomial expression formula, including two expansions of combinatorial number(rsn and ...
如果幂级数∑anxn与∑bnxn满足条件r=∑bnxn 时,获得数列{an}与{bn}之间孪生组合恒等式的定理,应用在二项式定理等展开式上得出具体的多组孪生组合恒等式,其中包含组合数的两种展开法,Bernoulli数直接表达式的新证等结果。
-
For example, 2-order Taylor central finite difference is adopted in Yee format and 4-order in Fang format.
而Taylor级数展开定理是构造差分格式的一种重要方法,例如Yee格式采用二阶Tabor格式,Fang格式采用四阶Taylor格式。
-
Since the multiple scattering should be considered, the scattering problem of many-cylinders is more complicated than single cylinder. By using scattering matrix method to solve the scattering problem of many-cylinders, first we have to express the incident fieldand scattered field by special function(for example, Bessel function and Hankel function)under cylindrical coordinate, then use the addition theorem of special function to get a linear system of equations to relate the incident field coefficients and scattered field coefficients. The incident and scattered field coefficients for every cylinder can be solved from the linear equations by matching electromagnetic boundary condition pointwisely.
单颗圆柱散射体的散射场解析解很早就被解出,而多个圆柱阵列的散射场问题因为涉及到入射光在圆柱与圆柱间的多重散射,故散射行为较单颗圆柱的散射复杂,因此圆柱阵列的多重散射问题需要利用加法定理来处理;散射矩阵法的主要精神即是先用圆柱座标下的特殊函数对平面波和圆柱散射体的内外域电磁场做无穷级数展开,再藉由特殊函数的加法定理将所有圆柱散射体的展开中心移到同一个展开中心,最后可以得到一组连结整个散射系统的入射电磁场系数及散射电磁场系数的线性方程组,将该组线性方程配合电磁场在散射体边界的连续条件,便可分别求出圆柱阵列中各个圆柱体的内部电磁场与外部散射场,再利用线性叠加原理即可求得整个圆柱系统的全域电磁场分布。
-
First, this paper, in the field of intrinsic geometry, studies the geometric problems on garment design, as well as applies the frame and semi-geodesic coordinates to prove the fundamental theorem of being a developable surface.
文中首先在内在几何学的层次上,研究了服装设计所涉及的几何学问题,应用标架与半测地坐标方法证明了曲面成为可展面的基本定理,研究了可展面的分类及其性质,考虑到服装三维几何造型的需要,证明了组合式可展面各组成片相切连接条件的命题,作为构造可展面的理论依据,证明了单参数平面族的包络面必为可展面的命题,在此基础上发展出服装几何造型的"刮大白"方法以及相关的三种构造可展面的解析方法。3D→2D的变换是三维服装CAD的重要内容之一,其几何学实质是曲面的定长映射,文中总结了定长映射即可展面在平面上展开的基本准则,在这一准则的指导下,结合服装设计与相关领域的要求,讨论了可展面在平面上展开的解析方法与数字方法,上述内容确立了服装设计几何学的基本框架。
-
In view of the third purpose, time series method is applied, by means of Sylvester Expansion Theorem, this paper improves an algorithm of constructional analysis of l...
本文基于建模目的3,应用时间序列方法,依据Sylvester展开定理提出一种线性系统结构分析的算法,并给出线性系统的一个简易定阶法。
-
By means of the expansion theorem, the displacement is expressed as the summation of the first several exact modal vectors.
考虑前若干阶线性振动模态,使用展开定理,将索的位移表示成共轭的模态函数的级数和。
-
The method includes a "Theorem of General Expansion" for a complicated network and a "Theorem of Minimizing Expansion" for a logical expression.
本文提出了复杂网络的"大展开定理"和逻辑表式的"最小化展开定理",并简要地叙述了本文作者已发表在"继电器"杂志(1978年1、2期)上的"逻辑——概率变换"和"单幂变换"等法则。
-
With proving the isomorph between the function matrix algebra systems and the Boolean algebra s disjunction-conjunction systems,a method of extending the function matrix is proposed,and the expanding theorem of the extended function matrix is proven.
提出了功能矩阵的概念,在证明功能矩阵的代数系统与布尔代数析取合取代数系统同构的基础上,对功能矩阵进行扩展,并证明了扩展功能矩阵的展开定理;利用扩展功能矩阵逐步展开与约简,实现了功能的求解算法。
-
It introduces partial fractions of meromorphic functions, product developments of entire functions, Hadamard's theorem, Riemann Zeta functions, Poisson-Jensen's formula; elliptic functions, including simply periodic functions and doubly periodic functions; algebraic functions and algebroid functions, Riemann surface, Nevanlinna theory, including characteristic functions, the first and second fundamental theorems, growth orders, etc; complex differential equations and complex functional equations, etc.
具体为:亚纯函数的部分分式、整函数的无穷乘积展开、Hadamard定理、Riemann Zeta函数、Poisson-Jensen公式;椭圆函数,包括单周期函数、双周期函数;代数函数和代数体函数、Riemann曲面简介;Nevanlinna理论简介,包括特征函数、第一和第二基本定理、增长级等;复微分方程和复函数方程,等等。在教学内容上充分体现基础性、新颖性。
- 更多网络解释与展开定理相关的网络解释 [注:此内容来源于网络,仅供参考]
-
berg:(贝尔格)
当代数学名家L.贝尔格(Berg)、E.里克司廷斯(Riekstens)、G.阿斯科利(Ascoli)等人在各自的论文或专著中都介绍了徐利治的"渐近积分定理"和"展开定理",德国数学家R.黎德尔(Riedel)在作博士论文时还将推广徐利治的渐近积分定理作为选题.
-
binomial expansion:二项式展开
binomial distribution 二项分布 | binomial expansion 二项式展开 | binomial theorem 二项式定理
-
binomial expansion theorem:二项式展开定理
binomial distribution 二项式分布 | binomial expansion theorem 二项式展开定理 | binomial theorem 二项式定理
-
expansion of a determinant:行列式的展开
expansion in terms of eigenfunction 本寨数展开 | expansion of a determinant 行列式的展开 | expansion theorem 展开定理
-
expansion theorem:展开定理
expansion of a determinant 行列式的展开 | expansion theorem 展开定理 | expectation 期望值
-
laplace expansion theorem:拉普拉斯展开定理
laplace expansion 拉普拉斯展开 | laplace expansion theorem 拉普拉斯展开定理 | laplace integral 拉普拉斯积分
-
Hilbert-Schmidt expansion theorem:希尔伯特-施密特展开定理
希尔伯特-施密特型核|kernel of Hilbert-Schmidt type | 希尔伯特-施密特展开定理|Hilbert-Schmidt expansion theorem | 希尔伯特变换|Hilbert transform
-
Shannon expansion theorem:向农展开定理
向农公式 Shannon equation | 向农展开定理 Shannon expansion theorem | 向农公式 Shannon formula
-
Laplace expansion:拉普拉斯展开
laplace equation 拉普拉斯方程 | laplace expansion 拉普拉斯展开 | laplace expansion theorem 拉普拉斯展开定理
-
multinomial expansion theorem:多项式展开定理
"多项式系数","multinomial coefficient" | "多项式展开定理","multinomial expansion theorem" | "对象","object"