- 更多网络例句与射影的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper we define the concept of Projective Blaschke manifolds and extend the theory of equiaffine differential geometry to the projective Blaschke manifolds. We prved that if M be a complete projective Blaschke n-sphere and its universal covering manifold is isometric to a complete (n+1) dimensional parabolic, elliptic or hyperbolic affine hypersphere, then M is a quotient space of E^n, S^n or D^n by a isometric subgroup of its corresponding spaces.
在这篇文章中我们定义了射影Blaschke流形的概念,将等仿射微分几何的理论推广到了射影Blaschke流形,并证明:如果n维完备射影Blaschke 超球面 M 的通用覆盖流形分别是完备的抛物型、椭圆型或双曲型仿射球,则M分别是n维欧氏空间、n维超球面或n维单位圆盘关于各自空间的一个等距离散子群的商,从而对完备射影Blaschke 超球面进行了分类。
-
Using homogeneous projective coordinate,this paper presents a researches of the dual of projective space and reveals the essence of dual fundamentals of projective space the same coordinate represents both point and plane,and there is a dual relation in the point and plane.
射影空间是对偶结构,用齐次射影坐标研究了射影空间的对偶原理,从而揭示出射影空间里互相对偶的点与平面的坐标之间的内在联系
-
Designating a property of a geometric figure that does not vary when the figure ''.
射影的指定几何图形属性的,以便当这个图形经受影射时不发生变化
-
Designating a property of a geometric figure that does not vary when the figure undergoes projection.
射影的指定几何图形属性的,以便当这个图形经受影射时不发生变化
-
In order to give the geometric meaning of Inner product of two vector,the textbook printed by People's Education Press use the concepts of "projection" and "image" of vector.
为了给出两个向量的"数量积"的几何意义,现行人教版教材引入了向量的投影和射影的概念。
-
In order to give the geometric meaning of Inner product of two vector,the textbook printed by People s Education Press use the concepts of "projection" and "image" of vector .
二者字面意思基本一样,但"投影"是一个实数,"射影"是一个向量,二者不是同一类事物,而且对向量的射影的表述有不当之处。
-
This paper studies the relations between plane projective correspondence and perspective correspondence and present a necessary and sufficient condition that plane projective correspondence become perspective correspondence.
研究二维射影对应与透视对应的关系,给出二维射影对应是透视对应的充要条件,得到二维射影对应可分解若干次透视对应,进而给出二维射影对应的几何意义。
-
Several diffrent but mutual-related models of the projective plane in this thesis reveal its structure and imagins its entire form,and had shown the whole nature-one side through the relations of the projective plane and Mobius tie .
本文给出射影平面的几个不同但是互相联系的模型,借以揭示射影平面的结构,想象射影平面的整体形状,并通过射影平面与莫比乌斯带的关系来了解射影平面的一个整体性质———单侧性。
-
A parametric study graphic nature of the projection, that is, they read the projective transformation, remained the same graphic nature of the geometry, the branches. 2D projective transformation is a more common transform method, used in the camera lens of the camera plane, and applied to various fields of study.
射影几何是研究图形的射影性质,即它们经过射影变换后,依然保持不变的图形性质的几何学分支学科。2D射影变换是一种较为常见的变换方法,发生在用透视摄像机对平面摄像的时候,并应用于各个研究领域。
-
We make use of a mapping known as stereographic projection.
我们作一个称为球极平面射影的映射。
- 更多网络解释与射影的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
ratio of a parallel projection:平行射影的比例
ratio method 比值法,比例法 | ratio of a parallel projection 平行射影的比例 | ratio of absorption 吸收率
-
dimension of a projective variety:射影簇的维数
射影超平面|projective hyperplane | 射影簇的维数|dimension of a projective variety | 射影代数集|projective algebraic set
-
projective symplectic group:射影纠纽群
射影的;特殊么正(或单式)群 projective special unitary group | 射影纠纽群 projective symplectic group | 射影变换 projective transformation
-
projective algebraic set:射影代数集
射影簇的维数|dimension of a projective variety | 射影代数集|projective algebraic set | 射影等价|projective equivalence
-
projective:射影的;投影的
射影法 projection method | 射影的;投影的 projective | 射影星形线 projective astroid
-
projectively flat:射影平坦的
projectively complete 射影完全的 | projectively flat 射影平坦的 | projectively flat space 射影平坦空间
-
projectively complete:射影完全的
projective variety 射影簇 | projectively complete 射影完全的 | projectively flat 射影平坦的
-
projective special unitary group:射影的;特殊么正(或单式)群
射影空间 projective space | 射影的;特殊么正(或单式)群 projective special unitary group | 射影纠纽群 projective symplectic group
-
projective astroid:射影星形线
射影的;投影的 projective | 射影星形线 projective astroid | 射影坐标 projective coordinates
-
orthographical:正交射影的 直线的
orthograph 正视图 正投影图 | orthographical 正交射影的 直线的 | orthographicalplan 平面图