英语人>词典>汉英 : 导函子 的英文翻译,例句
导函子 的英文翻译、例句

导函子

词组短语
derived functor
更多网络例句与导函子相关的网络例句 [注:此内容来源于网络,仅供参考]

Let μ be a smooth measure with a quasi regular Dirichlet form, A μ be its non negative additive functional,and U α A μ be the α Potential operator of A μ.

设μ是拟正则狄氏型的光滑测度,Aμ是其对应的非负连续可加泛函,UαAμ是Aμ的α位势算子,本文证明了测度μUαAμ关于μ的绝对连续性,并以R-N导数dμUαAμdμ刻划了μ具有有限能量积分的条件。

The variational problems of the complete functional in calculus of variations are studied deperding on the arbitrary arguments,arbitrary multivariable functions and arbitrary-order partial derivatives of multivariable functions.

研究变分法中依赖于任意个自变量、任意个多元函数和任意阶多元函数偏导数的完全泛函的变分问题;提出并证明了完全泛函的变分问题的定理,采用偏微分算子,给出了完全欧拉方程组。

Further, with the help of Riccati equations, an infinite number of conservation laws for the solton hierarchy are deduced. For the sake of simplicity, taking the general TD hierarchy as an illustrative example, we prove that its 2×2 Lenard pair of operators forms a Hamiltonian pair. Thus the isospectral evolution TD hierarchy is the general Hamiltonian system and possesses the Bi-Hamiltonian structures and Multi-Hamiltonian structures. By using the method of derivation of functional under some constraint condition, a complete one-to-one correspondence between the Hamiltonian functions of the hierarchy and its conservation density functions can be built. These results can also be applied to the isospectral evolution soliton hierarchy of this paper. Finally, there's a gauge transformation between the spectral problem of this paper and the AKNS system. Moreover, the potentials in these spectral problems satisfy the general Miura transformation, the corresponding relationship between the two soliton hierarchies is also given.

进一步本文还通过特征函数的组合关系所满足的Riccati方程,得到了该等谱方程族的无穷多个守恒律;为简便起见,本文以广义TD族为例,由它的2×2 Lenard算子对的性质证明了此算子对为Hamilton算子对,这说明广义TD族是广义Hamilton系统且具有Bi-Hamilton结构和Multi-Hamilton结构;进而利用它的依赖于谱参数的一般守恒密度的积分在约束条件下求泛函导数的方法,得到了广义TD族的Hamilton函数与守恒密度之间的对应关系,这些性质对于由本文提出的2×2谱问题所导出的等谱孤子族仍成立;另外此谱问题与AKNS系统存在着规范变换,位势之间有广义Miura变换,而孤子方程之间也满足一定的等价关系。

The process of our study links some of the most basic questions about C〓 with beautiful classical results from analyticfunction theory. For instance, it is essential Littlewood subordination theorem that assures that composition operators act boundedly on many analytic function spaces. And there are close connections between the compactness of C〓 and the existence of angular derivatives of ψ at points of 〓D. It involves the classical Julia-Careatheodory theorem, Denjoy-Wolff theorem and Nevanlinna counting functions and so on. It makes many old theorems in analytic-function theory getting some new meanings, and bestows upon functional analysis an interesting class of linear operators. This thesis consists of six chapters as follows: Chapter 1 is a preparatory in nature.

从而建立了C〓的算子性质与解析函数论中许多漂亮的经典结果之间的联系,如许多解析函数空间上复合算子的有界性本质上往往是著名的Littlewood从属原理,复合算子的紧性与其诱导映射在边界〓D上的角导数之间有着紧密的联系等等,这样自然而然地涉及到经典函数论中的Julia-Caratheodory定理,Denjoy-Wolff定理及Nevanlinna计数函数等等一些结果,并以此赋予函数论中许多古老问题以新意,同时也为泛函分析提供了一类十分具体的线性算子。

更多网络解释与导函子相关的网络解释 [注:此内容来源于网络,仅供参考]

contravariant functor:逆变函子

反变导数 contravariant derivation | 逆变函子 contravariant functor | 反变指标 contravariant index

covariant functor:共变函子

共变导数|covariant derivative | 共变函子|covariant functor | 共变微分|covariant differential

derived functor:导函子

derived function 导数 | derived functor 导函子 | derived graph 导出图

derived functor:导出函子

导出代数|derived algebra | 导出函子|derived functor | 导出列|derived series

total derived functor:全导函子

interval valued functions 区间值函数 | total derived functor 全导函子 | diapiric fold [地质]挤入褶曲, 底辟

left derived functor:左导函子

左傍系空间 left coset space | 左导函子 left derived functor | 左微分 left differential

left derived functor:左导出函子

左乘环|left multiplication ring | 左导出函子|left derived functor | 左导数|left derivative

right derived functor:右导出函子

right derivative 右导数 | right derived functor 右导出函子 | right differentiability 右可微性

relative derived functor:相对导函子

pth 相对深度 | relative derived functor 相对导函子 | relative deviation of vertical 相对竖直线偏差

right derivative:右导数

right denominator 右分母 | right derivative 右导数 | right derived functor 右导出函子