- 更多网络例句与对角矩阵相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Therefore, in order to offer reference to readers, the paper systematically expound and prove the eigenvalue of special matrix that base on idempotent matrix, antiidempotent matrix, involutory matrix, anntiinvolutory matrix, nilpotent matrix, orthogonal matrix, polynomial matrix, the shape of , matrix, diagonal matrix, invertidle matrix, adjoint matrix, similar matrix, transposed matrix, numerical matrix, companion matrix, and practicality and superiority of the achievement was showed by some examples.
为此本文系统地阐述幂等矩阵,反幂等矩阵,对合矩阵,反对合矩阵,幂零矩阵,正交矩阵,多项式矩阵,形为:,矩阵,对角矩阵,可逆矩阵,伴随矩阵,相似矩阵,转置矩阵,友矩阵一系列特殊矩阵的特征值问题并加以证明,并通过一些具体例子展示所得成果的实用性和优越性。
-
When scaled factor circulant matrices are nonsingular, we can find the single solution of the scaled factor circulant matrix equation; When scaled factor circulant matrices are singular, we can find the special as well as the general solution of the scaled factor circulant matrix equation; There is only an error of approximation when the fast algorithm is implemented on computers, and only the elements in the first row of the scaled factor circulant matrix and the constants in the diagonal matrix are needed by the fast algorithm.
当鳞状因子循环矩阵非奇异时,该快速算法求出线性方程组的唯一解;当鳞状因子循环矩阵奇异时,该快速算法求出线性方程组的特解与通解。该快速算法仅用到鳞状因子循环矩阵的第一行元素及对角矩阵中的对角上的常数进行计算。在计算机上实现时只有舍入误差。
-
By using the properties of part matrix elements in N1 , and by looking for positive diagonal matrix factors, we present some new sufficient conditions of generalized strictly diagonally dominant matrix and improve the recent results.
第二章在行非严格对角占优集N_1划分为N_1~(1)与N_1~(2)的直和N_1~(1)⊕N_1~(2)的条件下,利用下标在N_1上部分矩阵元素的性质,寻求正对角矩阵因子,给出了广义严格对角占优矩阵的几个新的充分条件,同时改进了近期的一些结果。
-
In chapter three, we divide the rows of matrix into types finer than those in chapter one. Again by looking for positive diagonal matrix factors, we obtain several new criteria for identifying generalized strictly diagonally dominant matrix, improving some existing criteria.
第三章在下标集N 递进式划分的条件下,根据递进后,某些下标集上部分矩阵元素的性质,寻求正对角矩阵因子,获得了广义严格对角占优矩阵的几个新判别法,同时改进了一些已有结果。
-
In this paper,an algorithm for finding the inverse matrix of tridiagonal matrix by solving systems of linear algebraic equations is proposed.
根据三对角矩阵的特点,给出一种利用解线性方程组的方法求三对角矩阵的逆矩阵的算法。
-
In this paper, an algorithm for finding the inverse matrix of tridiagonal matrix by sloving systems of linear algebraic equations is proposed.
根据三对角矩阵的特点,给出一种利用解线性方程组的方法求三对角矩阵的逆矩阵的算法。
-
Therefore, in order to offer reference to Readers, based on idempotent matrix, involutory matrix, nilpotent matrix, diagonal matrix, the main character of special matrix are proved in this paper after the Defined and algorithm of eigenvalue of matrix .for example , some problems of the eigenvalues of matrix are solved in a special method based on the eigenvalues of matrix .
为此, 本文除了介绍矩阵特征值的定义和算法外,还围绕幂等矩阵、幂零矩阵、对角矩阵、等特殊矩阵给出了其主要性质并加以证明,同时还介绍了一些特殊矩阵的特征值的算法,例如:本文利用矩阵的特征值,对与矩阵的特征值相关的一些典型问题给出了较好的处理方法。
-
The characteristic vector of the real symmetric matrix should be found out, which is orthogonalized and normalized to a standard orthogonal base and is used as row vector to construct the transformation matrix P, so the P~(-1)AP can be made into diagonal matrix.
实对称矩阵A经相似变换P-1AP可化为对角矩阵,在x =Py 下,不一定能化A的二次型为标准型;应寻求对称矩阵A的特征向量,将其正交化并单位化作为标准正交基,作为列向量构造变换矩阵P,可使P-1AP=Λ为对角阵,在x =Py 下,要将二次型化为标准型,且二次项系数即为对角阵Λ主对角线上元素。
-
In many practice problems such as to know the resonnance frequency of a structure and to know the critical value for the stability of a dynamical system,often need to compute the eigenvalues of a symmetric matrix. The chief method to compute the eigenvalues of a symmetric matrix is first to transformate the matrix to a symmetric tridiagonal matrix similarly and orthogonally, then to use the QR method with shift to the symmetric tridiagonal matrix.
很多实际问题,如求结构振动的固有频率,动力系统稳定性的临界值等常常归结为计算对称矩阵的特征值,而首选的计算方法是先把该矩阵正交相似变换成一个对称三对角矩阵,再对这个对称三对角矩阵用带位移的QR方法。1968年J.H。
-
Based on the decomposition theorem for vector space with module structure and rational canonical form of matrix, a kind of new block diagonal controllably canonical forms are inferred when the time invariant linear multivariable system is completely controllable, which the system matrix is similar to a block diagonal and has an analogy with its rational canonical form. Compare with current controllability canonical forms, this kind is easier to analyse the system constructional characteristic. The process of proof gives an effective solution method.
基于向量空间的模结构分解和矩阵的有理标准形给出了定常多输入线性系统一类新的块对角可控规范型,其中的系统矩阵相似与一个块对角矩阵,该块对角矩阵类似于矩阵的有理标准形,与现在有的可控规范型比较,更容易反映系统的结构特征,证明步骤给出了求解方法。
- 更多网络解释与对角矩阵相关的网络解释 [注:此内容来源于网络,仅供参考]
-
block tridiagonal matrix:分块三对角矩阵
三对角方程组:tridiagonal systems | 分块三对角矩阵:Block tridiagonal matrix | 分块三对角矩阵:blocked tridiagonal matrix
-
Block period tridiagonal matrix:分块周期三对角矩阵
实对称三对角线矩阵:Real symmetric tridiagonal matrix | 分块周期三对角矩阵:Block period tridiagonal matrix | 交叉环:Crossed cycle
-
diagonal matrix:对角矩阵
植被状态转移矩阵 (State Transition Matrix)的唯一确定解如果存在,应当是对角矩阵 (Diagonal Matrix) 的形 式. 而,对角矩阵无异于多元向 量. 也即,多元向量是研究植被动态的正确数学工 具. 进而是多元指数增长系统动态分析的正确数学工 具.
-
block diagonal matrix:块对角矩阵
augmented matrix A 的增广矩阵 | block diagonal matrix 块对角矩阵 | block matrix 块矩阵
-
block diagonal matrix:分块对角矩阵
block design | 区组设计 | block diagonal matrix | 分块对角矩阵 | block diagram of system | 系统组成框图
-
block diagonal matrix:方块对角矩阵
"块装置","block device" | "方块对角矩阵","block diagonal matrix" | "方块图","block diagram"
-
periodic tridiagonal matrix:周期三对角矩阵
建模方法:model method | 周期三对角矩阵:periodic tridiagonal matrix | 交叉三对角矩阵:crossed tridiagonal matrix
-
blocked tridiagonal matrix:分块三对角矩阵
分块三对角矩阵:Block tridiagonal matrix | 分块三对角矩阵:blocked tridiagonal matrix | 二次式:quadratic form
-
crossed tridiagonal matrix:交叉三对角矩阵
周期三对角矩阵:periodic tridiagonal matrix | 交叉三对角矩阵:crossed tridiagonal matrix | 三对角方程组:tridiagonal systems
-
diagonally m-block tridiagonal matrix:对角m块三对角矩阵
diagonally isotone mapping 对角保序映射 | diagonally m-block tridiagonal matrix 对角m块三对角矩阵 | diagonaly body break 辊身对角折断