- 相近搜索
- 定理的
- 更多网络例句与定理相关的网络例句 [注:此内容来源于网络,仅供参考]
-
By using these convergence theorems,it presents the Silverman-To-eplitz regular theorem and Samaratunga-Sember theorem on the Abelian topologicalgroups,the Vitali-Hahn-Saks theorem on algebras and the weak sequentially completenesstheorem of 〓-dual spaces of sequence spaces,etc.
这是抽象分析中的两个基本定理。作为应用,给出了Abelian拓扑群上的Silverman-Toeplitz正则性定理、Samaratunga-Sember定理、代数上的Vitali-Hahn-Saks定理,以及序列空间的〓对偶空间之弱序列完备性定理等。
-
this article discusses the integral theorem of mean the promoted question, mainly has two aspects: On the one hand in analyzes in the teaching material under the first integral theorem of mean condition, had proven lies between the value spot to have to be possible to obtain in the open-interval, further discusses this knot promotes to the generalized Riemann integral, and further proved the conclusion also establishes to the promoted first integral theorem of mean; Promotes on the one hand in addition the integral theorem of mean to in the curve and the curved surface, and has proven the curvilinear integral theorem of mean and the surface integral theorem of mean.
本文讨论积分中值定理的推广问题,主要有二个方面:一方面在分析教材中第一积分中值定理的条件下,证明了介值点必可在开区间内取得,进一步将这个结论推广到广义Riemann积分,并进一步证明结论对推广的第一积分中值定理也成立;另一方面,将积分中值定理推广到曲线和曲面中,并证明了曲线积分中值定理和曲面积分中值定理。
-
Chapter one has introduced the background and classification of minimax theorems; Chapter two summarizes several proof method of minimax theorems, which are illustrated with examples; Chapter three has explained the development general situation of minimax theorems for a function and for two functions with chapter four respectively, and according to the classification of the theorem, has illustrated some important conclusionses in quantitative minimax theorems, topological minimax theorems and quantitative-topological minimax theorems separately.
第一章介绍了极大极小定理的背景及其分类;第二章总结了极大极小定理的几种证明方法,并举出例子进行说明;第三章和第四章分别阐述了单函数的极大极小定理和两个函数的极大极小定理的发展概况,在第三章中,按照极大极小定理的分类,分别对数量极大极小定理,拓扑极大极小定理和数量拓扑极大极小定理的一些重要结论作了介绍。
-
In this paper,making use of hyperplane method,we improve the proof of the separation theorem;On the other hand,we use a new method of moving neighborhood to simplify the proof for the continuity of a subconvex function defined on a convex in a normed linear space.
在巴拿赫空间理论中,Hahn-Banach泛函延拓定理作为泛函分析三大基本定理之一,分隔性定理是Hahn-Banach定理的重要应用,本文利用"超平面"的方法,改进了一个分隔性定理的证明;另外,本文利用邻域的"平移"方法,给出了定义在赋范线性空间内的凸集上的次凸泛函连续性的简捷证明。
-
Chapter two proposes the unified form of Hojman"s conservation law and Lutzky"s conservation law. Firstly, the author introduces the general Lie group of transformations that the variations of both the time and the generalized coordinates are considered, derives the determining equation of Lie symmetry for the system, presents a new conservation law, which contains the Hojman"s and the Lutzky"s conservation law as two special cases, and obtains a condition to exclude trivial Hojmans conserved quantities.
第二章,Hojman定理和Lutzky定理的统一形式:首先,引入一般意义下的Lie变换群(即位型变量q_s和时间变量t同时变换),给出系统的Lie对称性确定方程,提出一个新的守恒律,Hojman定理与Lutzky定理则分别是这个新守恒律在两个特殊情况下的推论,导出一个可排除平凡Hojman守恒量的定理,并分别讨论了Birkhoff系统和非完整系统的Lie对称性和Hojman守恒量,最后,讨论了Hamilton系统的梅对称性与Lie对称性的关系,给出了由梅对称性求Hojman守恒量的方法。
-
By using the partition theorem of unity, a continuous selection theorem for a multimap from a compact Hausdorff topological space to a finitely continuous topological spaces (simply, FC-spaces) without any convexity structure was obtained, and from which and Tychonoff fixed point theorem, a collectively fixed point theorem for a family of multimaps on the product space of compact FC-spaces and several collectively fixed point theorems for a family of multimaps on the product space of non-compact FC-spaces were given.
利用单位分解定理得到从紧的Hausdorff拓扑空间到没有任何凸结构的有限连续拓扑空间的集值映射的连续选择定理,并从该结果和Tychonoff不动点定理,得到紧的FC-空间的乘积空间上映射族的集族不动点定理和若干个非紧的FC-空间的乘积空间上的映射族的集族不动点定理,对文献中的相应结果进行了改进和一般化。
-
This thesis consists of five chapters. At first, We introduce the study history as well as present situation on KKM theory. Secondly, We discuss the invariability of transfer open valued multimap under the restriction of upper and lower semicontinuity on generalized convex spaces. Then, We obtain new KKM type theorems from the classical KKM theorem by applying upper and lower semicontinuity. We also obtain intersection theorems by applying the KKM type theorems for a multimap from a topological space to another topological space. Further, We obtain Ky-Fan type coincidence theorem by applying known variational results on the KKM type theorems. Finally, We give an application to new theorems.
本文共分五章,首先回顾了KKM理论的研究历史和现状,其次讨论了在一般化凸空间上转移开值映射在上、下半连续映射下的不变性,然后在上、下半连续映射下,以古典的KKM定理为基础得到新的KKM型定理,并利用从一个拓扑空间到另一个拓扑空间的集值映射及KKM型定理得到相交定理,进一步利用已知的KKM型定理的变形结论得到Ky-Fan型重叠定理,最后给出新定理的一个应用。
-
The thesis will introduce, respectively, relevant concepts of residue theorem and its promotion and application in two parts In the basic concepts of chapter II, the definition, classification and relationship between function zero and pole of the isolated singular point are given to lead out relevant definition, theorem and solving method, while the core content of this paper is promotion and application of residue theorem, including calculation of integration by using residues, application in diagonal theorem and argument theorem, application in electromagnetism and theorem promotion and relevant application of extension theorems
本文将从两大部分分别引入和浅析了留数定理的相关概念及其推广和应用在第二章的基本概念部分中,给出了孤立奇点的定义和分类、函数零点与极点的关系,从而引出留数定理的相关定义与定理及其求法而本文的核心内容也就是留数定理的推广和应用,包括运用留数来计算积分、体现在对角定理与辐角定理中的应用、在电磁学中的应用及其定理的推广和推广定理的相关应用
-
In this paper, reciprocal theorem methodis generalized to solve the problem of bending of thick rectangular plates under uniformly distributed load based on Reissner s theory.
功的互等定理功的互等定理"不成功"的模仿功的互等定律功的互等定理功的互等定理。功的互等的贝蒂定理修正的功的互等定理铁水含硅量磨削微粒
-
The fundamental properties of the system K are studied,and it is pointed out that All theorems of the system L are theorems of the system K.Some important theorems about quantifiers are obtained.Moreover,the following results also are proved that all instances of substitution in the system K of tautologies of the system L are logically valid for any R0 chain,the soundness theorem and strong soundness theorem hold in the system K,i.e.,all theorems ofthe system K also logically valid for any R0 chain.
其次,研究了系统K*的基本性质,指出了系统L*的定理都是系统K*的定理,给出了系统K*与量词有关的一些重要定理,证明了系统L*的重言式在系统K*中的代换实例都是系统K*中关于任何R0链的逻辑有效公式;系统K*的可靠性定理成立,即系统K*中的定理关于任何R0链也是逻辑有效的;系统K*的强可靠性定理也成立,即系统K*在任何理论T下的定理关于任何R0链也是逻辑有效的。
- 更多网络解释与定理相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Addition theorem:加法定理
本篇仅介绍两种方法,即乘积定理(conduct theorem)和加法定理(addition theorem). 乘积定理强调:两个独立事件协同现象(joint occurrence)的机率是两事件各别机率之积. 简言之,如果我同时抛两枚钱币,两枚都是正面向上,这就是所谓的协同现象;
-
approximation theorem:逼近定理=>近似定理
approximation roasted grain 近似于烘干种子 | approximation theorem 逼近定理=>近似定理 | approximation theory of price index number 近似值物价指数理论
-
bloch theorem:布洛赫定理,又称Bloch定理
Bloch oscillation, 布洛赫振荡,又称Bloch振荡 | Bloch theorem 布洛赫定理,又称Bloch定理 | blockade 阻塞
-
central limit theorem:中心极限定理
[简介]中心极限定理(central limit theorem) 概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理. 概率论中最重要的一类定理,有广泛的实际应用背景. 在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,
-
Lindeberg-Levy central limit theorem:林得柏格-李維中央極限定理
Lindeberg-Feller central limit theorem 林得柏格-费勒中央极限定理 | Lindeberg-Levy central limit theorem 林得柏格-李维中央极限定理 | Lindeberg-Levy theorem 林得柏格-李维定理
-
Lindeberg-Levy central limit theorem:林得博格-利瓦伊中央极限定理
林得博格-费勒中央极限定理 Lindeberg-Feller central limit theorem | 林得博格-利瓦伊中央极限定理 Lindeberg-Levy central limit theorem | 林得博格-利瓦伊定理 Lindeberg-Levy theorem
-
fermat last theorem:费马大定理,费马最后定理
Fermat great theorem 费马大定理 | Fermat last theorem 费马大定理,费马最后定理 | Fermat little theorem 费马小定理
-
Gauss theorem:高斯定理
后来在学多元微积分(又称向量微积分)时,我们会学到各种新的积分,如二重积分、三重积分、曲线积分(Line Integral)、面积分(Surface Integral)以及更多积分定理,包括格林定理(Green's Theorem )、高斯定理(Gauss' Theorem)和斯托克斯定理(Stokes' Theorem),
-
Lagrange theorem:拉格朗日定理
拉格朗日定理 流体力学中的拉格朗日定理 (Lagrange theorem) 由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem), 即漩涡不生不灭定理: 正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,
-
divergence theorem:散度定理
Green 定理是数学分析中最重要的定 理之一, 而在三维与更高维空间的推广- Stokes 定理与散度定理 (Divergence Theorem) 则构成了应用数学的基础. 2. 微积分基本定理: 微分与积分的关系这是微积分的主要房 角石, 实际上这正是牛顿与莱布尼兹对微积 分最重要的贡献,