- 更多网络例句与完备域相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The new method has two key steps: one is to get the automorphism group of HEm, and the another one is to introduce the concept of semi-Reinhardt domain and get its complete orthonornal system.
关键之处有两点:一是给出第三类华罗庚域的全纯自同构群,群中每一元素将形为(W,Z0)的内点映为点(W*,0);二是引进了semi—Reinhardt的概念并求出了其完备标准正交函数系。
-
Next,we concern with the famous problem of Kobayashi as follows:Whichbounded pseudoconvex domain is complete w.r.t.the Bergman metric?
第二部分,我们研究Kobayashi提出的一个著名问题:什么样的拟凸域是Bergman完备的?
-
The Bergman metric? We first prove the Bergman completeness for several class of non-smooth pseudoconvex domains.
我们首先证明了几类非光滑边界拟凸域的Bergman完备性;接着,我们研究超凸域上的Bergman度量。
-
We prove that a bounded hyperconvex domain D is Bergman complete if the pluricoinplex Green function is symmetric.
我们证明了若一个有界超凸域的多复变量Green函数是对称的,则其是Bergman完备的。
-
Next, we concern with the famous problem of Kobayashi as follows: Which bounded pseudoconvex domain is complete w.r.t.
第二部分,我们研究Kobayashi提出的一个著名问题:什么样的拟凸域是Bergman完备的?
-
We prove that a bounded hyperconvex domain D isBergman complete if the pluricomplex Green function is symmetric.
我们证明了若一个有界超凸域的多复变量Green函数是对称的,则其是Bergman完备的。
-
In this paper, based on fundamental topology theories, the concept of complete set is proposed and the closed ball model is constructed.
基于闭球模型可以直接推导出拓扑关系的完备集和概念邻域以及复合表。
-
Classic rough set theory based on equivalence relation takes complete system as object of study , and divides the region into some non-intersect equivalence class; But, in the real life, because of the errors in data measuring, understanding of data, or the restriction in data collection , it can make the decision-making system incomplete, that is, value of attribution of some objects is unknown, which restrains development of the theory to practical direction.
经典粗糙集理论以完备系统为研究对象,以等价关系为基础,通过等价关系将论域划分为互不相交的等价类;然而,在现实生活中,由于数据测量的误差,对数据理解或获取的限制等原因,使得在知识获取时往往面临的是不完备系统,即可能存在部分对象的一些属性值未知的情况,这就极大地限制了粗糙集理论向实用化方向发展。
-
We first provethe Bergman completeness for several class of non-smooth pseudoconvex domains.
我们首先证明了几类非光滑边界拟凸域的Bergman完备性;接着,我们研究超凸域上的Bergman度量。
-
For an abitrary set X, appropriate order relations on WCL (the set of all weak closure operators), WIN (the set of all weak interior operators), WOU (the set of all weak exterior operators), WB (the set of all weak boundary operators), WD (the set of all weak derived operators), WD*(the set of all weak difference derived operators), WR (the set of all weak remote neighborhood system operators) and WN (the set of all weak neighborhood system operators) can be defined respectively, which make WCL, WIN, WOU, WB, WD, WD*, WR and WN to be complete lattices that are ismorphic to CS(X,CS is the set of all closure systems on X.
证明了可以在WCL(X上的弱闭包算子的全体)、 WIN(X上的弱内部算子的全体)、 WOU (X上的弱外部算子的全体)、 WB (X上的弱边界算子的全体)、WD、 WD*(X上的弱差导算子的全体)、 WR(X上的弱远域系算子的全体)和WN(X上的弱邻域系算子的全体)上定义适当的序关系,使它们成为与CS(X,〖JX-*5[JX*5]同构的完备格其中CS(X是给定集合X上的闭包系统的全体。
- 更多网络解释与完备域相关的网络解释 [注:此内容来源于网络,仅供参考]
-
algebraically closed field:代数闭域
但是在不同的领域中,"完备"也有不同的含义,特别是在某些领域中,"完备化"的过程并不称为"完备化",另有其他的表述,请参考代数闭域(algebraically closed field)、紧化(compactification)或哥德尔不完备定理.
-
compactification:紧化
但是在不同的领域中,"完备"也有不同的含义,特别是在某些领域中,"完备化"的过程并不称为"完备化",另有其他的表述,请参考代数闭域(algebraically closed field)、紧化(compactification)或哥德尔不完备定理.
-
complete ordered field:全序域
complete normed linear space | 完备线性赋范空间 | complete ordered field | 全序域 | complete ordering | 完全有序
-
complete normality axiom:完全正规性公理
complete metric space 完备度量空间 | complete normality axiom 完全正规性公理 | complete ordered field 全序域
-
complete normed linear space:完备线性赋范空间
complete normality | 完全正规性 | complete normed linear space | 完备线性赋范空间 | complete ordered field | 全序域
-
reinforce:加强
II 区域为有待加 强(Reinforce)区 域,该区域内的软件产品技术先 进,但功能尚不够 强,它们代表市场上出现的先进技 术,但功能有待完备和加 强,III 区域为重新构 造(Rebuild)区 域,该区域内的软件产品功能方面得分很 高,但技术得分较 低,
-
sigmacompleteness:完备性
sigma space 空间 | sigmacompleteness 完备性 | sigmafield of sets 集的域
-
sigmafield of sets:集的域
sigmacompleteness 完备性 | sigmafield of sets 集的域 | sigmalattice 格
-
quasi-perfect and double quasi-perfect discrete signal:准最佳离散信号和双准最佳离散信号
完备矩形带:perfect rectangular band | 准最佳离散信号和双准最佳离散信号:quasi-perfect and double quasi-perfect discrete signal | 图的下完美邻域数:the lower perfect neighborhood number of graphs