- 更多网络例句与完备相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Then, theoretically, mathematical morphology is stretched from complete lattices to complete semi-lattices and the adjunction of complete semi-lattices is studied. Some qualities of mathematical morphology on complete semi-lattices are discussed and supported. Two examples of difference semi-lattice and reference semi-lattices are also supplied.
然后在理论上,把数学形态学从完备格延伸到完备半格,研究了完备半格上的伴随,讨论并证明了完备半格上数学形态学的一些性质,列出了差分半格和参考半格两个例子。
-
Then we deeply studied the completeness of LP . Consequently, we established:(1) The completeness theorem of LP with truth-value in finite Lukasiewiczchain;(2) The completeness theorem of LP with truth-value in complete and atomic lattice implication algebras;(3) The completeness theorem of LP with truth-value in injective lattice implication algebras.
建立了:(1)基于Lukasiewicz有限链的格值命题逻辑系统LP的完备性定理;(2)基于完备的且原子的格蕴涵代数的格值命题逻辑系统LP的完备性定理;(3)基于内射的格蕴涵代数的格值命题逻辑系统LP的完备性定理。
-
At completeness in theory, we give the base of mathematical morphology-complete lattice, and some nature of complete lattice.
作为理论上的完备性,我们给出了数学形态的代数学基础——完备格理论,并简单的介绍了完备格及其性质。
-
It is a great development that modern economics has transformed from conventional completive contract theory to incomplete contract theory.
现代经济学的一项重大发展是由传统的完备契约理论转向不完备契约理论。作为一种契约的组织内人工设计的激励契约也必然是不完备的。
-
In this paper we define the concept of Projective Blaschke manifolds and extend the theory of equiaffine differential geometry to the projective Blaschke manifolds. We prved that if M be a complete projective Blaschke n-sphere and its universal covering manifold is isometric to a complete (n+1) dimensional parabolic, elliptic or hyperbolic affine hypersphere, then M is a quotient space of E^n, S^n or D^n by a isometric subgroup of its corresponding spaces.
在这篇文章中我们定义了射影Blaschke流形的概念,将等仿射微分几何的理论推广到了射影Blaschke流形,并证明:如果n维完备射影Blaschke 超球面 M 的通用覆盖流形分别是完备的抛物型、椭圆型或双曲型仿射球,则M分别是n维欧氏空间、n维超球面或n维单位圆盘关于各自空间的一个等距离散子群的商,从而对完备射影Blaschke 超球面进行了分类。
-
At last we introduce the most important theory in this thesis which is the uniqueness of decomposition . Complete Lie colour algebra of any finite dimension can be decomposed to direct sum of simply complete ideas .And the decomposition is unique except the order of the ideas .
最后给出了本文最重要的一个定理——完备李color代数的分解唯一性定理,指出有限维完备李color代数可以分解为单完备理想的直和,而且除这些单完备理想的次序外,这种分解是唯一的。
-
The completion problems of partial inverse M-matrix for 3-chordal graph are discussed by using graph theory and the completion theorems for 3-chordal graphs are presented in this paper.
摘要利用图论的相关知识,在1-弦图、2-弦图完备的基础上探讨了3-弦图的完备问题,给出3-弦图的完备定理。
-
Recently , the classical Riesz representation theorem on Hilbert spaces has been generalized onto complete random inner product modules ,in this paper the classical Friedrichs theorem on Hilbert spaces is generalized onto complete random inner product modules.
最近,经典的Riesz 表示定理已经被推广到完备随机内积模上,在此基础上本文将Hilbert 空间上经典的Friedrichs 定理推广到完备随机内积模上。首先,证明完备随机内积模上任一正Her2 mite 型惟一地对应一个正自共轭算子。
-
Because the data categoricalness rules of architecture products are embodied in theCADM described by IDEF1X, the data categoricalness rules are directly established according to the relationship, which is described by the IDEF1X, among the data entity of CADM described by the IDEF1X. Then every item of data which is in the form of CADM criterion and stored in the database is checked according to the categoricalness rules, so that the data categoricalness of C~4ISR system architecture is executed.3. The verification methods of system accessibility based on CADM are studied.
2研究了基于CADM的数据完备性验证方法由于体系结构产品中数据元素的完备性规则已经完全表现在用IDEF1X描述的CADM模型中,所以论文根据IDEF1X对CADM数据实体之间关系的描述,直接建立了数据元素的完备性规则,然后根据完备性规则对以CADM规范存放在数据库中的每条数据进行检查,以此对C~4ISR系统体系结构数据进行完备性验证。
-
The research involves constructing network error model, choosing interpolation method, computing and validating integrity index for error correction, calculating user protection level.
算法主要包括网络系统完备性算法和用户完备性算法,内容包括网络误差模型的建立、插值算法的选择、误差改正数完备性指标的计算、完备性指标的验证和用户保护水平的计算等。
- 更多网络解释与完备相关的网络解释 [注:此内容来源于网络,仅供参考]
-
axiom of completeness:完备性公设;完备性公理
832,"axiom of closure","闭合公设;闭合公理" | 833,"axiom of completeness","完备性公设;完备性公理" | 834,"axiom of congruence","全等公设;全等公理"
-
completeness of axiom systems:公理系统的完备性
表现系的完备性 completeness for representations | 公理系统的完备性 completeness of axiom systems | 推理规则的完备性 completeness of rules of inference
-
essentially minimal complete class:本质最小完备类
本质完备类 essentially complete class | 本质最小完备类 essentially minimal complete class | 可估计的 estimable
-
complete field:完备体
完全族 complete family | 完备体 complete field | 完备群 complete group
-
complete valuation field:完备赋值域
complete treatment | (污水)完全处理 | complete valuation field | 完备赋值域 | complete valuation ring | 完备赋值环
-
quasi complete space:拟完备空间
quasi complete 拟完备的 | quasi complete space 拟完备空间 | quasi complete topology 拟完备拓扑
-
completeness of exponential family:指数族的完备性
完全性;完备性 completeness | 指数族的完备性 completeness of exponential family | 顺序统计量的完备性 completeness of order statistics
-
complete topological group:完备位相群;完备拓扑群
完全张量积 complete tensor product | 完备位相群;完备拓扑群 complete topological group | 完备均匀空间 complete uniform space
-
complete uniform space:完备均匀空间
完备位相群;完备拓扑群 complete topological group | 完备均匀空间 complete uniform space | 完备赋值环 complete valuation ring
-
complete valuation ring:完备赋值环
complete valuation field | 完备赋值域 | complete valuation ring | 完备赋值环 | complete valuation | 完备赋值