- 更多网络例句与存在性定理相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We prove the existence theorem of rationed with Borel points for meromorphic functions in the unit circle, discuss the operations of algebroid functions and the existence theorem of Nevanlinna direction of algebroid function dealing with mutiple values, and obtain some uniqueness theorems dealing with mutiple values of algebroid functions.
证明了单位圆内限定Borel点的亚纯函数的存在性定理,讨论了代数体函数的运算性质以及涉及重值的Nevanlinna方向的存在性定理,得到了一些涉及重值的代数体函数的唯一性定理; 2。
-
In this paper we study the existence and multiplicity of solutions for the semilinear elliptic Dirichlet problem at the first eigenvalue.
本篇文章主要研究了在一阶共振的半线性椭圆Dirichlet问题解的存在性和多解性,得到了几个解的存在性定理和一个多解性定理。
-
Using the fixed point theorem and degree theory, we give two existence theorems to the system under some conditions.
讨论了一类二、四阶耦合常微分方程组正解的存在性,利用不动点定理和度理论,在一定条件下得到了该方程组正解的两个存在性定理。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simon\'s nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
Simons [30] proved the non-existence theorem for stable integral current in acompact Riemannian submanifold isometrically immersed into a unit sphere andvanishing theorem for homology groups. In 1984, Y. L. Xin [47] generalized theLawson-Simons nonexistence theorem for stable integral current and vanishingtheorem for homology groups to the case of compact submanifolds in Euclideanspace, and gave several important applications.
Simons运用Federer-Fleming存在性定理[19]和几何测度论中变分技巧证明了单位球面中紧致黎曼子流形上稳定积分流的不存在性定理和同调群消没定理[30]。1984年,忻元龙将Lawson-Simons稳定积分流的不存在性定理和同调群消没定理拓广到了欧氏空间中紧致子流形的情形,并给出了若干重要的应用[47]。1997年,K。
-
In order to study vector-valued optimization problem, in chapter 5, a class of vector -valued function, that is, uniformly same-order set-valued function is introduced , which includes the separated functions as its proper subset; without hypothesis of convexity, new minimax theorem and saddle point theorem for uniformly same-order set-valued function are established. Next, by employing Ky Fan\'s lemma and H-KKM mapping , several existence results for generalized vector equilibrium problem established.
为了研究向量优化问题,作为可分函数的推广,第五章引入了一致同阶集值函数类,在没有凸性条件的假设下,对一致同阶集值函数建立了新的极小极大定理与鞍点存在定理;利用H-KKM映射,对一般向量均衡问题建立了(来源:A73BcbC论文网www.abclunwen.com)几个存在性定理;最后讨论了集值向量均衡问题系统,利用集值映射的拟凸性,在较弱的条件下证明了解的存在性。
-
In fifth chapter,as applications of the existence theorem of〓-optimalcoupling operator for the jump processes,the estimate of the varied expontialconvergence rate for the jump processes and the existence of an order-preservingMarkov coupling for the jump processes are investigated,where,the obtained theexistence theorem of an order-preserving Markov coupling is a general theorem onPolish space endowed with semiorder,it includes the results that existence theoremon countable state apace endowed with total order or finite state space endow withsemiorder have been obtained by the internal and external mathematicians in recentten years.
第五章作为跳过程〓最优耦合算子存在性定理的应用,讨论了跳过程各种指数收敛速度的估计和保序Markov耦合的存在性。其中保序Markov耦合存在定理是具有偏序关系波兰空间上的跳过程最一般的定理,它包括了近10年来国内外对具有全序关系可数状态空间或具有偏序关系有限状态空间上的跳过程关于保序Markov耦合存在定理的研究成果。
-
By applying existence theorems of maximal elements for a family of GB-majorized mappings in a product space of G-convex spaces, some coincidence theorem, Fan-Browder type fixed point theorem and some existence theorems of solutions for a system of minimax inequalities are proved under noncompact setting of G-convex spaces.
通过应用G-凸空间的乘积空间内一族GB-优化映象的极大元的存在定理,在G-凸空间的非紧设置下证明了某些重合点定理,Fan-Browder型不动点定理和极小极大不等式组的解的存在性定理。
-
This result is browden to n-dimentional case in chapter 2 first and an existence theorem (theorem 2.1) for linearly increasing solutions is given.
第二章将此结果推广到高维情形,给出了一个线性增长解的存在性定理(定理2.1);另外,本章还给出了方程存在对数增长解的两个定理(定理2.2—2.3)。
-
In the study of the first problem, by using the fixed-point index theorems, we get the existence of boundary value problem in neither superlinear nor sublinear condition.
在第二种形式边值问题的研究中,主要利用Krasnoselskii不动点定理,得到了一些正解存在性定理及正解不存在性定理。
- 更多网络解释与存在性定理相关的网络解释 [注:此内容来源于网络,仅供参考]
-
existence theorem for roots:根的存在性定理
existence theorem 存在定理 | existence theorem for roots 根的存在性定理 | existence theorem of implicit function 隐函数的存在性定理
-
existence theorem for roots:根的存在定理
existence proof 存在性证明 | existence theorem for roots 根的存在定理 | expandability 可扩张性,可扩充性
-
existence theorem of implicit function:隐函数的存在性定理
existence theorem for roots 根的存在性定理 | existence theorem of implicit function 隐函数的存在性定理 | existential quantifier 存在量词
-
existence theorem:存在定理
existence of extremum 极值的存在 | existence theorem 存在定理 | existence theorem for roots 根的存在性定理
-
existence theorem:存在性定理
Exhaustive expenditure 耗源性支出 | Existence theorem 存在性定理 | Existence value 存在价值
-
kronecker existence theorem:克罗内克存在性定理
kronecker delta 克罗内克符号 | kronecker existence theorem 克罗内克存在性定理 | kronecker index 克罗内克指数
-
incompleteness theorem:不完全性定理
现在作为献给北京大学法学院百年纪念而拿出来的理由是,哥德尔不完全性定理(Incompleteness Theorem)与不动点定理(Fixed-point Theorem)以及博弈论中的纳什均衡(Nash Equilibrium)存在性定理,在我的生命和思考中有著无与伦比的意义.
-
kronecker delta:克罗内克符号
krein milman property 克莱因 米尔曼性质 | kronecker delta 克罗内克符号 | kronecker existence theorem 克罗内克存在性定理
-
mean value theorem:中值定理
可能有人认为,即使是不能陈述出方法,也不能因此就否定或放弃这公理,因为在数学上有很多"存在性定理"(Existence Theorems),都是只指出某事件的存在性,而不具体描述寻求的方法,例如:中值定理(Mean Value Theorem)及洛尔定理(Rolle's Theorem),
-
existence and uniqueness theorem:存在和唯一性定理
existence 存在(性) | existence and uniqueness theorem 存在和唯一性定理 | existence axiom 存在性公理