- 更多网络例句与子拟群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In section 4,we research the solvable groups of finite rank,and provethat the union set of all quasi-cyclic subgroups of G is a characteristic subgroup andthe Hirsch number hdoes not exceed n if G is a solvable group of rank n.Inparticular,for an arbitrary solvable torsion-free group G of rank n,we give theupper bound fof the derived length of G.
在第4节里,我们研究了有限秩的可解群,证明了这类群的所有拟循环子群构成它的一个特征子群,且对秩n的可解群G来说,其Hirsch数h≤n,另外,我们给出了秩n的无挠可解群的导出长度的一个上界。
-
If each minmal subgroup or cyclic subgroup of order 4 of H is π-quasinormally embedded in G, then G∈F.
如果H的极小子群或4阶循环子群均在G中π-拟正规嵌入,则G∈F。
-
Then G∈U.③ If every subgroup of prime order or of order 4 of a group G has a U-s-supplement or be S-quasinormal in G. then G is supersoluble.
若群G的每个素数阶子群和4阶循环子群在G中或有U-s-补充,或为S-拟正规,则G为超可解群。
-
Subgroup H of G is said to be π-quasinormally embedded in G, if for each prime divisor p of the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some π-quasinormal subgroup of G.
bstract 设G是有限群,称G的子群H在G中π-拟正规嵌入,如果对于{H}的每个素因子p, H的Sylow p-子群也是G的某个π-拟正规子群的Sylow p-子群。
-
A subgroup H of G is said to be π-quasinormally embedded in G, if for each prime divisor p of the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some π-quasinormal subgroup of G.
设G是有限群,称G的子群H在G中π-拟正规嵌入,如果对于{H}的每个素因子p, H的Sylow p-子群也是G的某个π-拟正规子群的Sylow p-子群。
-
The steady-state solution is known to be the positive eigenfuction corresponding to the simple eigenvalue 0 of the system operator.
于是作为半群拟紧性和不可约性的直接结果,得到了系统的时间依赖解指数收敛到其静态解,并且该静态解即为系统算子简单特征值0对应的正的特征向量。
-
A sufficient condition for supersolvable group depending on theproperty π-quasinormal of its Fitting subgroup is given.
聂林通过讨论有限群的Fitting子群的极小子群的π-拟正规性,利用有限群的正规群列及多种有限群论的方法和技巧,得到了一个有限的可解群成为超可解的充分条件。
-
The authors use the condition that some subgroups of a finite group G has a U-s-supplement or be S-quasinormal in G, to give some conditions under which the group G is supersolvable and generalize some of these results into formations.
利用群G的某些子群在G中或有F-s-补充,或为S-拟正规,给出有限群为超可解的若干充分条件,并将其中的一部分结果推广到群系中。
-
A subgroup of a finite group G is called π-quasinormal in G if it permutes with every Sylow subgroup of G. A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup N of G such that G=HN and H∩N≤H=Core.
有限群G的一个子群称为在G中是π-拟正规的若它与G的每一个Sylow-子群是交换的。G的一个子群H称为在G中是c-可补的若存在G的子群N使得G=HN且H∩N≤H=Core。
- 更多网络解释与子拟群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
quasi rotation group:拟旋转群
quasi rotation 拟旋转 | quasi rotation group 拟旋转群 | quasi self adjoint operator 伪自伴随算子
-
quasi self adjoint operator:伪自伴随算子
quasi rotation group 拟旋转群 | quasi self adjoint operator 伪自伴随算子 | quasi semi order 拟半有序
-
subprojective manifold:次射影廖
subproduct 子积 | subprojective manifold 次射影廖 | subquasigroup 子拟群
-
subquasigroup:子拟群
subprojective manifold 次射影廖 | subquasigroup 子拟群 | subquotient of a module 模的子商
-
subquotient of a module:模的子商
subquasigroup 子拟群 | subquotient of a module 模的子商 | subreflexive 子反射的
-
totally symmetric loop:完全对称圈
totally singular subspace 全奇异子空间 | totally symmetric loop 完全对称圈 | totally symmetric quasigroup 完全对称拟群