英语人>词典>汉英 : 多项式 的英文翻译,例句
多项式 的英文翻译、例句

多项式

基本解释 (translations)
multinomial  ·  polynomial  ·  quantic  ·  polynome

词组短语
polynomial expression
更多网络例句与多项式相关的网络例句 [注:此内容来源于网络,仅供参考]

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

Firstly, this paper describes the history and state of the research to the minimal polynomial and the characteristic polynomial and then gives the main methods and its computational complexities for computing the characteristic polynomial and of a constant matrix, the characteristic polynomial of a polynomial matrix and the minimal polynomial of a polynomial.

本文先叙述了对最小多项式和特征多项式的国内外的研究历史和现状,然后给出了已有的计算常数矩阵特征多项式多项式矩阵的特征多项式和常数矩阵最小多项式的主要算法及其复杂性。

When to get the coefficients of polynomial directly,the ill-conditioned matrix may be produced and effect the precision of result.Using orthogonal polynomial can avoid this problem.This paper introduces 4 orthogonal polynomial.In our discussion,it is proposed to use Chebyshev polynomial and Legendre polynomial,they are easier to sa...

讨论4种常用正交多项式在拟合卫星轨道与时间函数时的适用性;通过计算实例说明利用切比雪夫多项式和勒让德多项式做数据拟合时具有很高的精度;分析得出评定多项式拟合数据精度的适用阶数,实际应用中可降低工作量,提高计算效率;最后讨论同一多项式阶数下不同历元数对拟合结果的影响。

Furthermore, we express a real quaternionic polynomial with four general polynomials which have real coefficients, thus build direct relation between real quaternionic polynomials and general polynomials.

新方法以四元数的复表示及其可对角化的特征结构为理论基础,将问题等价为求解2×2矩阵多项式的可对角化解;进一步将四元数多项式用四个实系数多项式表示,建立了四元数多项式与一般多项式的直接关联。

The problem of Lagrange interpolation of polynomial space in space Rs is studied,and the construction of Lagrange interpolation polynomial in space R1 and space R2 is proposed.

研究空间Rs 中多项式空间中的Lagrange插值问题。给出了R1和R2上Lagrange插值多项式的构造,同时,给出了R2上插值问题的几个例子。另外,给出了矩形网点上的Lagrange插值多项式和三角形网点上的Lagrange插值多项式。讨论了Rs空间中的Lagrange插值多项式及其余项

Zeros of irreducible real quaternionic polynomial are the isolated point solutions of the original polynomial equation.

不可约四元数多项式的零点对应原多项式的孤立点解,一次实系数多项式的零点对应原多项式的实数解,二次实系数多项式(Δ<0)的零点对应原多项式的等价类解。

This book reviews the many areas of numerical analysis, including the configuration polynomial, finite difference, factorial polynomials, summation, Newton formula, operator and configuration polynomial, Cheung section, close polynomials, TaylM more item type, interpolation, numerical differentiation, numerical integration, and with the series, differential equations, differential equations, least squares polynomial approximation, minimax polynomial approximation, rational function approximation, triangular approximation, non-linear algebra, linear equations, linear programming, boundary value problems, MonteCarIo methods and so on.

本书综述了数值分析领域的诸多内容,包括配置多项式、有限差分、阶乘多项式、求和法、Newton公式、算子与配置多项式、祥条、密切多项式、TaylM多项式、插值、数值微分、数值积分、和与级数、差分方程、微分方程、最小二乘多项式逼近、极小化极大多项式逼近、有理函数逼近、三角逼近、非线性代数、线性方程组、线性规划、边值问题、MonteCarIo方法等内容。本书的特色主要表现在利用例题及大量详细的题解来透彻地阐明所述内容的内涵,同时附有大量的补充题以便读者进一步巩固和深化从书中获得的数值分析知识。

Finally, we present an efficient algorithm for computing the minimal polynomial of a polynomial matrix. It determines the coefficient polynomials term by term from lower to higher degree.

最后,我们给出了一种计算多项式矩阵最小多项式或特征多项式的有效算法,它从低次项到高次项逐项确定最小多项式的系数多项式

On the basic theory, some concepts are proposed, such as partial derivative of waveform polynomial, waveform polynomial vector, delay matrix, multiple valued Boolean process, conditional sensitization, waveform distance with crosstalk and three-dimentional Boolean process. And based on these concepts, a sensitization theorem for sequential circuits and the transition numbers theorems for waveform polynomial are proposed; the model and data structure for the representation and manipulation of waveform polynomial are proposed.

基础理论方面,提出波形多项式偏导、波形多项式向量、延时矩阵、多值Boolean过程、条件可敏化、考虑串绕的波形距离及三维Boolean过程等概念,并在此基础上提出时序电路的敏化定理、波形多项式描述跳变数的定理以及波形多项式多项式符号表示与运算的模型和数据结构。

First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.

文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。

更多网络解释与多项式相关的网络解释 [注:此内容来源于网络,仅供参考]

associated laguerre polynomial:可结合的拉盖尔多项式,连带拉盖尔多项式

associated Laguerre function 连带拉盖尔函数,可结合的拉盖... | associated Laguerre polynomial 可结合的拉盖尔多项式,连带拉盖尔多项式 | associated Legendre function 连带勒让德函数,可结合的勒让...

associated legendre polynomial:可结合的勒让德多项式,连带勒让德多项式

associated Legendre function 连带勒让德函数,可结合的勒让德函数 | associated Legendre polynomial 可结合的勒让德多项式,连带勒让德多项式 | associated liquid 缔合液体

polynomial of best approximation:最佳逼近多项式

polynomial of a variable 一变量多项式 | polynomial of best approximation 最佳逼近多项式 | polynomial of degree n n 次多项式

polynomial continuous game:多项式连续对策

polynomial computer 多项式计算机 | polynomial continuous game 多项式连续对策 | polynomial counter 多项式计数器

polynomial approximation:多项式近似法

多项式 polynomial | 多项式近似法 polynomial approximation | 多项式收缩;多项式降阶 polynomial deflation

polynomial approximation:多项式近似,多项式近似法

polynomial 多项式,多项的,多项式的 | polynomial approximation 多项式近似,多项式近似法 | polynomial approximation method 多项式逼近法

polynomial approximation method:多项式逼近法

polynomial approximation 多项式近似,多项式近似法 | polynomial approximation method 多项式逼近法 | polynomial arithmetic 多项式计算

polynomial of degree n:次多项式

多项式模;多项式加群 polynomial module | n次多项式 polynomial of degree n | 多项式环 polynomial ring

Sect 17 - Dividing Polynomials by Monomials:节17分的单项式多项式

Sect 16 - Multiplying Polynomials教16-2160多项式 | Sect 17 - Dividing Polynomials by Monomials节17分的单项式多项式 | Sect 18 - Dividing Polynomials by Polynomials节18分多项式多项式

polynomials:多项式

10.3 多项式(Polynomials) conv 多项式相乘 deconv 多项式相除 poly 由根创建多项式 polyder 多项式微分 polyfit 多项式拟合 polyint 积分多项式分析 polyval 求多项式的值 polyvalm 求矩阵多项式的值 residue 求部分分式表达 roots 求多项式的根 优化和寻根(Optimization 11.1 优化和寻根(Optimization and root finding