- 更多网络例句与多面体群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
G is called point-transitive if it has a point-transitive automorphism group. Let PM denote the perfect matching polytope of the graph G.
称G是顶点可传递的,如果其自同构群是顶点传递的。G的完美匹配多面体记作PM。
-
We obtain three classes of polyhedra which have high symmetry. they are regular tetrahedral class belonging to tetrahedral group , regular hexahedral class and regular octahedral class belonging to octahedral group.
本文将Goldberg在正十二面体上构筑多面体的方法推广到其它柏拉图多面体上,分别得到了三类具有较高对称性的多面体:属于四面体群的正四面体类和属于八面体群的正六面体类、正八面体类。
-
According to the point group symmetry,we introduce the quantity,representative patch,to represent the smallest equivalent patch on the surface offullerenes.
根据富勒烯的点群对称性,提出了代表区这一概念,用它来表示富勒烯多面体的表面上的最小等价块。
-
The crystal structures have been determined by X-ray diffraction method, which show that the new complex [Co2-Co(2)(0H2)s] belongs to the bridging binuclear complex and the system of monoclinic with space group P211~,unit cell parameters a8.3850(10)A, b=27.386(4) A, c=9.610(2) A,~=98.280(10)~,V=2 183.8(6) A3 , Z=4, Dc=l.746Mg/m3,~i =l.597mm, F(000)=1168, Final R=O.0253 and wR=O.0610 S1.009 ,The two Co2~ are in distorted octahedrons. The part of [2Co] possess an approximate D2d symmetry, while the part of [OCo(2)(0H2)5] has an approximate C2 symmetry.
结构分析表明配合物(1)[Co1,(DPC2-Co(2)(OH2)5]是一个未见报导的桥联双核配合物,属单斜晶系,空间群为P2_1/c,晶胞参数:a=8.3850(10)A,b=27.386(4)A,c=9.610(2)A,β=98.280(10)A,V=2183.8(6)A~3,Dc=1.746Mg/m3,Z=4,μ=1.597mm-1,F(000)=1168,结构偏离因子R=0.0253和ωR=0.0610,吻合因子S=1.009,Co_(1)和Co_(2)的配位多面体皆为扭曲正八面体,[_2Co_(1)]部分具有近似D_(2d)对称性,[OCo(2)(OH_2)5]部分具有近似C_2对称性。
-
We obtain three classes of polyhedra which have high symmetry.
本文将Goldberg在正十二面体上构筑多面体的方法推广到其它柏拉图多面体上,分别得到了三类具有较高对称性的多面体:属于四面体群的正四面体类和属于八面体群的正六面体类、正八面体类。
- 更多网络解释与多面体群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
polyharmonic equation:多谐方程[式]
"多边形化","polygonization" | "多谐方程[式]","polyharmonic equation" | "多面体群","polyhedral group"
-
polyhedral game:多面体对策
polyhedral domain 多面体域 | polyhedral game 多面体对策 | polyhedral group 多面体群
-
polyhedral group:多面体群
"多谐方程[式]","polyharmonic equation" | "多面体群","polyhedral group" | "多面体","polyhedron"
-
regular polyhedral group:正多面体群
regular polyhedral angle 正多面角 | regular polyhedral group 正多面体群 | regular polyhedron 正多面体,规则多面体
-
polyhedral set:多面集
polyhedral group 多面体群 | polyhedral set 多面集 | polyhedron 多面体
-
regular polyhedron:正多面体,规则多面体
regular polyhedral group 正多面体群 | regular polyhedron 正多面体,规则多面体 | regular polytope 正则多胞形
-
regular icosahedron group:正二十面体群
正多面体|regular polyhedron | 正二十面体群|regular icosahedron group | 正泛函|positive functional
-
topologically regular polyhedron:拓扑正多面体
topologically nilpotent element 拓扑幂零元 | topologically regular polyhedron 拓扑正多面体 | topologically solvable group 拓扑可解群
-
group of rotation:旋转群
正多面体群 group of regular polyhedrons | 旋转群 group of rotation | 对称群 group of symmetrics
-
group of regular polyhedrons:正多面体群
运动群 group of motions | 正多面体群 group of regular polyhedrons | 旋转群 group of rotation