英语人>词典>汉英 : 壳层电子 的英文翻译,例句
壳层电子 的英文翻译、例句

壳层电子

词组短语
orbital electrons
更多网络例句与壳层电子相关的网络例句 [注:此内容来源于网络,仅供参考]

All the alkali metals have a single s-electron outside a closed shell.

所有的碱金属都在闭合壳层之外有一单个S电子。

The ground state of Ag atom has a closed Ad shell and a single s valence electron, hence it could be seen as "alkali-like" metals.

基态银原子具有饱和的内层d电子4d~(10和1个价电子(5s~1)的电子构型,与碱金属壳层结构类似,因此被看作"类碱"金属。

Taking into account the ions relativistic effect, the expression of atomic ionization energy of electronic state of the second and first shell is given using shielding method.

考虑到离子的相对论效应,依据屏蔽方法,给出了原子第2、1壳层电子电离能的一种表达式。

All the atomic shells for the examined atoms are shown and the """"""""reasonable"""""""" electron numbers are given. Especially for atomic subshell and shell structure of transition elements are correctly predicated. This theory provides uniform and objective criterion for shell structure of isolated atom, and the intrinsic and theoretical basis for the shell structure given by other methods. This theory provides a kind of new method for describing the atomic shell structure.

该理论可以揭示原子的全部壳层结构,产生基本合理的电子数,尤其是正确的预示了原子的亚壳层结构和过渡元素的壳层结构;依据该理论所确定的原子内禀壳层结构为孤立原子的壳层结构提供了统一的客观标准,为其它方法所确定的壳层结构提供了内在的理论依据;原子内禀壳层结构理论为度量孤立原子中处于束缚态下电子排布的壳层结构,提供了清晰的物理图像,为描述原子的壳层结构提供了一种新方法和新理论。

The inner reorganization energy and the exothermicity of the reaction are then determined. Closed shell HF SCF calculations have been carried out for the systems Tryptophy1-Tyrosine and Tyrosyl-Tryptophan for different values of R, and the Koopmans^,theorem is invoked to estimate the energy level splitting A.From the obtained A~m~i~n, the values of electron transfer matrix element V~D~A are determined to be 0.96kJ. mol^-^1 and 0.87kJ.mol^-^1 for Tryptophyl-Tyrosine and Tyrosyl- Tryptophan, respectively.

对色氨酰酪氨酸和酪氨酰色氨酸体系进行闭壳层HF自洽场计算,按Koopmans定理计算体系分子轨道分裂能值A,在R约为0处发现了A的极小值,从而获得色氨酰酪氨酸及酪氨酰色氨酸体系分子内电子转移的电子转移矩阵元V~D~A分别为0.96kJ.mol^-^1和0.87kJ.mol^-^1。

Based on the experimental data of low (less than 13) ionization energy of lighter elements, the function of shielding coefficient, electronic states and atomic number is summarized when the atom ionizes electron in different electronic state of the second and first shell.

依据较轻元素原子低次(小于13)电离能实验数据,总结出原子电离第2、1壳层不同电子态电子时,相应的屏蔽系数与电子态及原子序数的函数关系,根据该函数关系,可求出相应原子的高次电离电子的屏蔽系数。

Week 12 Spin of electron, forth quantum number, description of hydrogen atom with quantum mechanics, Pauli exclusion principle, shell distribution of electrons out of atomic nucleus.

第12周电子的自旋-第四个量子数;氢原子的量子力学描述;泡利不相容原理;元素原子核外电子的壳层分布。

Therefore, more electrons close to the core, the interaction between the electrons and the core more, and the self-energy more.

所以与核靠近的壳层上的电子越多,电子与核内静电吸引的排斥力就越大,产生的自能修正就越大。

In chapter 2 and 3, experimentally, using the Angular-Resolved high-resolution fast Electron Energy Loss Spectrometer , at the condition of 2. 5 keV incident energy and 50-60 meV energy resolution, we measured the Optical Oscillator Strength Density Spectra for the excitations of 4p, 4s or 3d electron. The oscillator strengths for excitations of the valent shell 4p electron were obtained, and comparisons were done between presently experimental and previously experimental and theoretical results. The experimental results of different groups agree with each other approximately, but the semi-experientially theoretical results do not match with the experimental results. The delayed maximum in the photoabsorption spectra was discussed. It should arise from the transition of 4p→∈d. For the excitation of the inner-valent 4s electron, the discrepancies for the resonant structures in previous electron-impact results and photoionization results were clarified in present work, which confirms again that the fast electron impact method is suitable to measure the optical oscillator strengths. The autoionization Rydberg series 4s〓ns (n=5, 6, 7) and 4s〓nd (n=4, 5, 6, 7) were identified without ambiguity by the measurement at 0°, 2° and 4°scattering angles. The energy levels and natural widths of the excitations of Kr3d and Ar2p inner shell, including optically allowed and forbidden transitions, were determined. The widths of these inner shell excitations are nearly the same, which was interpreted by the Resonant Auger effect .

在第二章和第三章,实验上,使用角分辨的高能量分辨快电子能量损失谱仪,在2.5keV电子入射能量和50-60meV能量分辨下,测量了Kr原子由价壳层4p到内价壳层4s,再到内壳层3d电子激发的光学振子强度密度谱;得到了价壳层4p电子激发束缚态的光学振子强度,与前人实验和半经验理论结果作了细致的比较,说明几家实验是比较符合的,但半经验的理论计算存在问题;分析了光吸收谱中的延迟极大现象,说明在第一电离阈值以上几个eV范围内的极大值源于4p→εd跃迁产生的延迟极大;对于内价壳层4s激发的自电离区,澄清了前人实验中电子碰撞方法和光学方法在共振结构上存在差异的问题,再一次肯定了快电子碰撞方法是获得绝对光学振子强度的一种好方法;通过在非0°散射角的测量(如2°和4°),清楚地标识了4s电子激发的光学禁戒跃迁自电离里德堡系列4s〓ns(n=5,6,7)和4s〓nd(n=4,5,6,7);通过在0°和4°散射角的测量,观测并标识了几个新的内壳层光学禁戒跃迁能级,得到了Kr原子3d和Ar原子2p内壳层激发态(包括光学允许和禁戒跃迁形成的)的能级位置和自然宽度,用共振俄歇效应解释了这些内壳层激发态(不管是光学允许还是禁戒跃迁产生的)的自然宽度彼此比较接近的原因。

Week 15 Wave function, Schrodingger equation, infinite deep potential well in one dimension. Spin of electron, forth quantum number, description of hydrogen atom with quantum mechanics, Pauli exclusion principle, shell distribution of electrons out of atomic nucleus.

第15周波函数;薛定谔方程;一维无限深势阱;氢原子的定态薛定谔方程和求解的主要步骤;解的物理意义;电子的自旋-第四个量子数;氢原子的量子力学描述;泡利不相容原理;元素原子核外电子的壳层分布。

更多网络解释与壳层电子相关的网络解释 [注:此内容来源于网络,仅供参考]

closed shell of electrons:封闭电子壳层

closed fault 闭合断层 | closed shell of electrons 封闭电子壳层 | closest packing 最密装填

electron donor:电子给体

electron coupling 电子偶联 | electron donor 电子给体 | electron envelope 电子壳层

emission spectrum:发射光谱(根据发射光源和激发能量方式所产生的特征电磁波谱)

electron shielding 电子屏蔽 | emission spectrum 发射光谱(根据发射光源和激发能量方式所产生的特征电磁波谱) | energy level 能态,能级(稳态能量,有相同主量数的电子壳层)

ESCA:化学分析用电子能谱法

X-射线光电子能谱(XPS)又称为化学分析用电子能谱法(ESCA),它是依据具有足够能量的入射光子和样品中的原子相互作用时,单个光子把它的全部能量转移给原子中某壳层上的一个受束缚的电子,如果能量足以克服原子的其余部分对此电子的作用,

forbidden band:禁带

禁带(Forbidden Band) 允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带. 原子壳层中的内层允许带总是被电子先占满,

innermost electron:最深层电子

innermost DO range 最内层循环区域 | innermost electron 最深层电子 | innermost electron shell 最内电子壳层

subshell:次壳层

我们知道,原子中的电子分布在壳层(Shell)和次壳层(Subshell)内,而这些壳层分别与不连续的能级相对应. 层用1、2、3等来标识;次层用s、p、d和f来标识. 在s、p、d和f次层中分别有1、3、5和7个能态,由泡利不相容原理可知,两个电子不能处于一个完全相同的状态.

valence shell electron:价壳<层>电子

valence shell 价壳 | valence shell electron 价壳电子 | valence state 价态

valence shell:价壳<层>

元素的化学性质的主要关键是它的电子组态(electron configuration), 特定的价壳层(valence shell)电子将显现特定的化学相似性. 原子的价壳层(最外层)电子归驻(reside)的轨域类型决定它在周期表中的『区块』(block);

valence shell electron:价壳<层>电子

valence shell 价壳<层> | valence shell electron 价壳<层>电子 | valence state 价态