- 更多网络例句与基本行列式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Some basic properties of σ- LFSR over F4 are studied, such as nonlinearity, cycle structure distribution of state graph, the largest period and counting problem related. The conclusions are as follows:The coefficient ring of σ-LFSR is isomorphic to the matrix ring over F,. The cycle structure of σ- LFSR is consistent with that of the determinant of the corresponding polynomial matrix if and only if the feedback polynomial of - LFSR does not contain nontrivial factor over F2,. The counting formula of the number of σ- LFSR with inconsistent cycle structure is also showed in that part. The period of σ-LFSR with degree n is maximum if and only if the determinant of the corresponding polynomial matrix is the primitive polynomial with order 2n over F2,.
本文研究了有限域F_4上的σ-LFSR的一些基本性质,如非奇异性、状态图的圈结构的分布、最大圈的充要条件及相关的计数问题等,得到以下结论:σ-LFSR的系数环同构于F_2上的矩阵环;σ-LFSR的状态图的圈结构与对应的多项式矩阵的行列式的圈结构一致的充要条件为σ-LFSR的反馈多项式不含有非平凡的F_2上的因式,给出了圈结构不一致的σ-LFSR的计数公式; n次σ-LFSR周期达到最大,当且仅当对应多项式矩阵的行列式为F_2上的2n次本原多项式。
-
Considering the mechanical and electrical boundary conditions of AlN/GaN structures, determinantal equation which is used to solve the phase velocity of surface acoustic wave is given from the basic principle of matrix methods.
从矩阵方法的基本原理出发,结合AlN/GaN结构的机械和电学边界条件,推导出用于求解声表面波在AlN/GaN结构中的相速的行列式方程。
-
Content of the course consists of:(1)Basic Theories of Polynomials ;(2)Linear Algebra: topics on basic matrix theory, determinant, system of linear equations, vector space, linear transformation, eigenvalue problems, inner product and Euclidean space , and quadratic form etc.;(3) Analytic Geometry: topics on algebraic operations of vectors, coordinates, lines and planes, curves and curved surfaces, etc.
学习本课程后,学生应学会用线性空间与线性变换的观点处理包括线性代数方程组在内的有关理论与实际问题;学会熟练地运用矩阵工具;本课程还学习基本的多项式知识和空间解析几何的基本知识。课程内容包括几个主要部分:(1)多项式代数;(2)线性代数:矩阵,行列式,线性代数方程组,向量空间与线性变换理论,特征值问题,欧氏空间理论,二次型等;(3)解析几何:几何空间向量代数,通过建立坐标系以及借助向量方法研究空间平面与直线及点﹑线﹑面的相互关系,借助曲面方程研究空间曲面,尤其是柱面,锥面,旋转面和二次曲面以及曲面的交线等。
-
As a part of linear algebra, theory of determinants is of a long history.
作为近世线性代数的一个基本分支,行列式理论却有着悠久的历史。
-
The text for making every variety positive definite matrix and positive sub-definite matrix to unification, the concept of almost positive definite matrix is given, and its properties and determinant theories are discussed, and many new results are obtained.
本文研究了各类正定矩阵与次正定矩阵的基本性质及行列式理论,提出了准正定矩阵的概念,获得了许多新的结果,推广了Hadamard、Openheim、Ostrowski-Taussky与Minkowski等著名不等式以及屠伯埙、杨新民等的有关结果,扩大了Minkowski不等式的指数范围。
-
The main topics are: determinants, matrices, rank of a matrix, vector spaces, linear equations, eigenvalues and eigenvectors, quadratics.
本课程的基本内容有行列式、矩阵、向量空间、线性方程组、矩阵的特征值与特征向量、二次型。
-
The main topics are: determinants, matrices, rank of a matrix, linear equations, eigenvalues and eigenvectors.
本课程的基本内容有行列式、矩阵、线性方程组、矩阵的特征值与特征向量。
-
It mainly exists in three forms,so the deduction of determinantal properties correspondingly exists in three ones.
行列式定义是分析行列式性质的基本依据,行列式定义主要存在三种形式,于是行列式性质的推导也就有三种形式。
- 更多网络解释与基本行列式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
fundamental cycle:基本闭链
fundamental curve 基本曲线 | fundamental cycle 基本闭链 | fundamental determinant 基本行列式
-
fundamental determinant:基本行列式
fundamental cycle 基本闭链 | fundamental determinant 基本行列式 | fundamental discriminant 基本判别式
-
fundamental discriminant:基本判别式
fundamental determinant 基本行列式 | fundamental discriminant 基本判别式 | fundamental domain 基本域