- 更多网络例句与基本曲线相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Base Load 基本负荷 Base load is that portion of a building load demand which is constant.
基本负荷是指建筑负荷需求量中不变的那一部分,是构成负荷需求曲线的基数。
-
Finally it analyzes the feasibility that using hydromechanics to analyze traffic flow by contrasting various characters between traffic flow and fluid flow. It analyzes influence of road alignment to basic expressway segment capacity by hydromechanics, and obtains viscous resistance and viscous movement differential equation when the vehicle drives on circular curve segment of expressway. And it infers that viscous resistance is correlated with sideway force coefficient, slope of crown and radius of circular curve. Radius of circular curve, sideway force coefficient and slope of crown are bigger, viscous resistance is smaller, the influence to capacity is smaller when the vehicle is running on nearside lane of circular curve; but radius of circular curve and sideway force coefficient are bigger, slope of crown is smaller, viscous resistance is smaller, the influence to capacity is smaller when the vehicle is running on fast lane of circular curve.
最后通过对比交通流与流体流的相似性,运用流体力学分析了道路线形对快速路基本路段通行能力的影响,求出了车辆在曲线路段的粘性阻力,建立了车辆在曲线路段的粘性运动微分方程,并由此推知,粘性阻力与横向力系数、路拱横坡度和圆曲线半径都有关系,当车辆在圆曲线外侧车道上行驶时,圆曲线半径、横向力系数和路拱横坡度越大,粘性阻力就越小,对道路的通行能力影响就越小;而当车辆在圆曲线内侧车道上行驶时,圆曲线半径和横向力系数越大,路拱横坡度越小,粘性阻力就越小,对道路的通行能力影响就越小。
-
In this paper, we introduce the algorithm of Schoof-Elkies-Atkin to compute the order of elliptic curves over finite fields. We give out a fast algorithm to compute the division polynomial f〓 and a primitive point of order 2〓. This paper also gives an improved algorithm in computing elliptic curve scalar multiplication. Using the method of complex multiplication, we find good elliptic curves for use in cryptosystems, and implemented ElGamal public-key scheme based on elliptic curves. As a co-product, we also realized the algorithm to determine primes using Goldwasser-Kilian's theorem. Lastly, the elliptic curve method of integer factorization is discussed. By making some improvement and through properly selected parameters, we successfully factored an integer of 55 digits, which is the product of two 28-digit primes.
本文介绍了计算有限域上椭圆曲线群的阶的Schoof-Elkies-Atkin算法,在具体处理算法过程中,我们给出了计算除多项式f〓的快速算法和寻找2〓阶本原点的快速算法;标量乘法是有关椭圆曲线算法中的最基本运算,本文对[Koe96]中的椭圆曲线标量乘法作了改进,提高了其运算速度;椭圆曲线的参数的选择直接影向到椭圆曲线密码体的安全性,文中利用复乘方法构造了具有良好密码特性的椭圆曲线,并实现了椭圆曲线上ElGamal公钥体制;文中还给出了利用Goldwasser-Kilian定理和椭圆曲线的复乘方法进行素数的确定判别算法;最后讨论了利用椭圆曲线分解整数的方法并进行了某些改进,在PC机上分解了两个28位素数之积的55位整数。
-
Secondly, in our methods, the essential geometry of the image single axis geometry may be specified by six parameters and this may be estimated from one conic and one fundamental matrix (a total of 12 parameters) or may be minimally estimated from two conics (a total of 10 parameters).
本文证明了单轴旋转运动的不变量可以通过一个基本矩阵和一条二次曲线来确定,在这种情况下,由于基本矩阵的自由度为7,二次曲线的自由度为5,所需确定的参量个数仅为12,大大减少了不变量的计算量;本文同时证明单轴旋转运动的不变量可以通过最少两条二次曲线来确定,在这种情况下所需确定的参量个数仅为10,该方法是目前同类算法中参数最少的;本文提出了用多条二次曲线求解单轴旋转运动的不变量的最大似然估计算法,其所需确定的参量个数为6+2n,其中n为二次曲线的个数,该公式更深刻地反映了二次曲线与不变量的参数关系。
-
This paper introduces the real number domain and limited domain of the definition of Elliptic Curves, it introduces the basic principles of Diffie-Hellman key exchange in detail which bases on the definition of Elliptic Curve Cryptosystem, and the methods of implementation which makes use of Elliptic Curve. It analysis the advantages and disadvatages of the Diffie-Hellman key exchange technology , and gives a worthwhile improvement in the same time.
本文介绍了在实数域和有限域中椭圆曲线的基本定义,然后以椭圆曲线的基本定义为基础,详细论述了基于椭圆曲线密码的 Diffie-Hellman 密钥交换的基本原理及利用椭圆曲线实现密钥交换的方法,分析了Diffie-Hellman 密钥交换技术的优缺点,并给出了值得改进的地方。
-
This dissertation investigates the construction of pseudo-random sequences (pseudo-random numbers) from elliptic curves and mainly analyzes their cryptographic properties by using exponential sums over rational points along elliptic curves. The main results are as follows:(1) The uniform distribution of the elliptic curve linear congruential generator is discussed and the lower bound of its nonlinear complexity is given.(2) Two large families of binary sequences are constructed from elliptic curves. The well distribution measure and the correlation measure of order k of the resulting sequences are studied. The results indicate that they are "good" binary sequences which give a positive answer to a conjecture proposed by Goubin et al.(3) A kind of binary sequences from an elliptic curve and its twisted curves over a prime field F_p. The length of the sequences is 4p. The "1" and "0" occur almost the same times. The linear complexity is at least one-fourth the period.(4) The exponential sums over rational points along elliptic curves over ring Z_ are estimated and are used to estimate the well distribution measure and the correlation measure of order k of a family of binary sequences from elliptic curves over ring Z_.(5) The correlation of the elliptic curve power number generator is given. It is proved that the sequences produced by the elliptic curve quadratic generator are asymptotically uniformly distributed.(6) The uniform distribution of the elliptic curve subset sum generator is considered.(7) We apply the linear feedback shift register over elliptic curves to produce sequences with long periods. The distribution and the linear complexity of the resulting sequences are also considered.
本文研究利用椭圆曲线构造的伪随机序列,主要利用有限域上椭圆曲线有理点群的指数和估计讨论椭圆曲线序列的密码性质——分布、相关性、线性复杂度等,得到如下主要结果:(1)系统讨论椭圆曲线-线性同余序列的一致分布性质,即该类序列是渐近一致分布的,并给出了它的非线性复杂度下界;(2)讨论两类由椭圆曲线构造的二元序列的"良性"分布与高阶相关性(correlation of order κ),这两类序列具有"优"的密码性质,也正面回答了Goubin等提出的公开问题;(3)利用椭圆曲线及其挠曲线构造一类二元序列,其周期为4p(其中椭圆曲线定义在有限域F_p上),0-1分布基本平衡,线性复杂度至少为周期的四分之一;(4)讨论了剩余类环Z_上的椭圆曲线的有理点的分布估计,并用于分析一类由剩余类环Z_上椭圆曲线构造的二元序列的伪随机性;(5)讨论椭圆曲线-幂生成器序列的相关性及椭圆曲线-二次生成器序列的一致分布;(6)讨论椭圆曲线-子集和序列的一致分布;(7)讨论椭圆曲线上的线性反馈移位寄存器序列的分布,线性复杂度等性质。
-
While the experimental side force distribution over a slender body with a blunt ogive nose is basically consistent with the curve of the analogy predicted, and the characteristic points and half cycle of the experimental curve are basically constant with the roll angle changing 360°. But the local maximums in the curve are not the results as the analogy predicted, which is an important flow feature of 3-D slender body than that of 2-D cylinder.
而钝头拱形细长体在大迎角下的截面侧向力分布与脉冲起动横流比拟方法预测的侧向力曲线的形状是基本相同的,而且随着滚转角旋转360°,截面侧向力分布曲线的特征点和半周期基本保持不变,即它们都基本上不受滚转角变化的影响;但是截面侧向力分布曲线极值点形成的原因却是不同的,这是细长体绕流区别于二维圆柱绕流的一个重要特性。
-
This paper first analyses and summarizes the ststus quo and evolution trend of encryption, some common used cryptograph are introduced, including the algorithms used in symmetric cryptosystem and asymmetirc cryptosystem. We describe the theory of each algorithms and compare the elliptic curve cryptosystem with the other two asymmetric cryptosystems to show the advantages of this algorithm. Second, the principle of ECC is discussed, including the math foundation of ECC, basic conception of elliptic curves, constructiong idea of ECC, operation on the elliptic curve and so on. Third, the current attacks of ECC were analyzed deeply, and an algorithm based on limited prime number field was constructed. We analyzed its realizability in theory, and implement it by using certain function of MIRACL software package. Latter half in this paper, the implementation model of a simple elliptic curve encryption system which based on GF has been introduced. The paper also put a deep analysis on the algorithm of point addition and point multiplication.
本文首先对密码技术的发展现状及其发展趋势进行了分析和综述,详细的介绍了私钥密码系统和公钥密码系统的发展,说明各种算法的原理和优缺点,并给出了一些典型的密码体制的简要分析,重点将椭圆曲线算法与其它几种公钥密码算法比较,说明椭圆曲线算法的优势;其次,探讨了椭圆曲线密码体制的原理,包括椭圆曲线密码的数学基础、基本概念、椭圆曲线密码体制的构造思想等问题;第三作者对椭圆曲线的攻击现状作了详细的分析,针对所使用的大素数域F_p,设计了素数域上安全椭圆曲线产生的算法,从理论上做了可实施性分析,从软件上做了具体实现;在本文的后半部分,提出了一个简单的基于有限素数域上的椭圆曲线加密方按算实现模型,并对SECES中设计的点加和点乘运算进行了深入分析。
-
This dissertation investigates the construction of pseudo-random sequences (pseudo-random numbers) from elliptic curves and mainly analyzes their cryptographic properties by using exponential sums over rational points along elliptic curves. The main results are as follows:(1) The uniform distribution of the elliptic curve linear congruential generator is discussed and the lower bound of its nonlinear complexity is given.(2) Two large families of binary sequences are constructed from elliptic curves. The well distribution measure and the correlation measure of order k of the resulting sequences are studied. The results indicate that they are "good" binary sequences which give a positive answer to a conjecture proposed by Goubin et al.(3) A kind of binary sequences from an elliptic curve and its twisted curves over a prime field F_p. The length of the sequences is 4p. The "1" and "0" occur almost the same times. The linear complexity is at least one-fourth the period.(4) The exponential sums over rational points along elliptic curves over ring Z_ are estimated and are used to estimate the well distribution measure and the correlation measure of order k of a family of binary sequences from elliptic curves over ring Z_.(5) The correlation of the elliptic curve power number generator is given. It is proved that the sequences produced by the elliptic curve quadratic generator are asymptotically uniformly distributed.(6) The uniform distribution of the elliptic curve subset sum generator is considered.(7) We apply the linear feedback shift register over elliptic curves to produce sequences with long periods. The distribution and the linear complexity of the resulting sequences are also considered.
本文研究利用椭圆曲线构造的伪随机序列,主要利用有限域上椭圆曲线有理点群的指数和估计讨论椭圆曲线序列的密码性质——分布、相关性、线性复杂度等,得到如下主要结果:(1)系统讨论椭圆曲线-线性同余序列的一致分布性质,即该类序列是渐近一致分布的,并给出了它的非线性复杂度下界;(2)讨论两类由椭圆曲线构造的二元序列的&良性&分布与高阶相关性(correlation of order κ),这两类序列具有&优&的密码性质,也正面回答了Goubin等提出的公开问题;(3)利用椭圆曲线及其挠曲线构造一类二元序列,其周期为4p(其中椭圆曲线定义在有限域F_p上),0-1分布基本平衡,线性复杂度至少为周期的四分之一;(4)讨论了剩余类环Z_上的椭圆曲线的有理点的分布估计,并用于分析一类由剩余类环Z_上椭圆曲线构造的二元序列的伪随机性;(5)讨论椭圆曲线-幂生成器序列的相关性及椭圆曲线-二次生成器序列的一致分布;(6)讨论椭圆曲线-子集和序列的一致分布;(7)讨论椭圆曲线上的线性反馈移位寄存器序列的分布,线性复杂度等性质。
-
Theory; the spatial meshing theory includes comparative motion, comparative differential and conjugative curved surface; and the application of meshing theory includes gear drive and worm drive. The spatial meshing theory is the main part of the course.
课程的重点讲解内容有曲线的参数方程、切线、法面、弧长、曲率、空间曲线的基本公式、挠率及平面曲线的基本公式等;曲面第一和第二基本公式,法曲率、主方向和主曲率、欧拉公式、短程挠率、欧拉公式和贝特朗公式推广、相对法曲率和相对短程挠率等;刚体的绝对和相对运动速度、相对微分和绝对微分、相对速度和相对微分、轨迹曲面的法曲率和短程挠率等;空间共轭曲面的啮合条件、诱导法曲率、两类界限点、等距共轭曲面、空间啮合的二次接触原理等;蜗杆传动的数学模型建立及啮合特性分析方法等。
- 更多网络解释与基本曲线相关的网络解释 [注:此内容来源于网络,仅供参考]
-
normal frequency curve:正态频率曲线,常态高斯频率曲线
normal distribution curve 正态分布曲线,常态分布曲线 | normal frequency curve 正态频率曲线,常态高斯频率曲线 | normal magnetization curve 基本磁化曲线
-
fundamental constants:基本常数
fundamental conjunction 基本合取 | fundamental constants 基本常数 | fundamental curve 基本曲线
-
fundamental curve:基本曲线
modified equation 转换后的方程 | fundamental curve 基本曲线 | fast headstock 固定式前顶针座, 床头, 固定架
-
fundamental curve:索道曲线,悬链线
基本大圆 fundamental circle | 索道曲线,悬链线 fundamental curve | 基本频率F fundamental frequency F
-
fundamental magnetization curve:基本磁化曲线
fundamental loss 基本损失 | fundamental magnetization curve 基本磁化曲线 | fundamental mode 主振动形式
-
fundamental rheological curve:基本流变曲线
fundamental research | 基本理论研究 | fundamental rheological curve | 基本流变曲线 | fundamental sampling theorem | 基本采样定理
-
fundamental cycle:基本闭链
fundamental curve 基本曲线 | fundamental cycle 基本闭链 | fundamental determinant 基本行列式
-
fundamental cycle:基本闭链体;基本循环
基本曲线 fundamental curve | 基本闭链体;基本循环 fundamental cycle | 基本有向点集;基本定向点集 fundamental directed set of points
-
fundamental matrix:基本行列
fundamental magnetization curve 基本磁化曲线 | fundamental matrix 基本行列 | fundamental mesh 基本网孔
-
normal probability curve:正态机率曲线,正态概率曲线
normal magnetization curve 基本磁化曲线 | normal probability curve 正态机率曲线,正态概率曲线 | normal recession curve 正常亏水曲线,正常退水曲线