- 更多网络例句与四元群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
When wepossess information about the values of a Copula at points in its domain of definition,the bounds can often be narrowed.
本文证明了由Copula及其生存、对偶和伴随Copula组成的集合在函数的复合运算下构成了Klein四元群,求解了群中元素的界以及它们在某个点处的函数值给定时的界。
-
Chapter 1 gives the background,current research process of relatedproblems and summarizes this thesis\'s work.In chapter 2,we study the Brownian motion with holding and jumping on the boundary.We use the resolvent method to obtain the infinitesimal generator because the domain of the infinitesimal generator is essentially the same as the range of the resolvent.Knowledge of this range and of the differential operator determines uniquely the infinitesimal generator.Since the semigroup generated by the DHJ is not strongly continuous,to use the nice property of strongly continuous semigroup in analytic theory,in chapter 3 we show that the dual is strongly continuous and derive ergodicity through spectral radius formulas and finally obtain the ergodic theorem by duality. In chapter 4,we discuss a class of a more general process---one dimensional Feller diffusion proposed by W.Feller in 1954.The Feller diffusion allows the possibility of jumps from boundary to boundary,not only from boundary to the interior.We give the stationary distribution of this process.
具体地,本文的结构如下:第一章给出了问题产生的背景,研究现状及本文的主要工作;第二章研究了在边界上逗留后随机跳的布朗运动,我(来源:3dABC论文网www.abclunwen.com)们用预解算子的方法得到其无穷小生成元,因为无穷小生成元的定义域本质上就是预解算子的值域,知道这个值域和微分算子形式就能唯一地决定无穷小生成元;由于DHJ过程产生的半群不是强连续的,为利用强连续半群的一些漂亮性质,在第三章中我们证明其对偶半群是强连续的,然后由谱半径公式得到遍历性并且最后由对偶得到遍历定理;第四章讨论了Feller在1954年引入的更广的一类过程----一维Feller扩散过程,Feller扩散过程允许有从边界到边界的跳发生,即不仅仅局限于从边界到内部的跳,在这一章中,我们给出了一维Feller扩散过程的平稳分布;在第五章,我们讨论了一些相关的问题,给出了DHJ过程对应的PDE问题及特征值与收敛速度的关系。
-
And find that each element in the group can be decomposed into the product of two quaternion component matrices.
指出SO(4)群中每个矩阵都可以分解为两种单位四元数分量矩阵乘积的形式。
-
In chapter 4, we define the concept of q-element, and unify group invariant matrix, perfect sequence and q-element. We give their construction, necessary conditions and applications in the theory of difference sets.
在第四章中,我们提出了q-元的概念,并且整合了群不变矩阵、完美序列、q-元这三个概念,给出了它们的构造,它们存在的必要条件,及它们在差集理论中的应用。
- 更多网络解释与四元群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Cayley:引进抽象群和矩阵
1843:Hamilton发现四元数代数 | 1846:Cayley引进抽象群和矩阵 | 1871:Dedekind引进理想
-
Claire:郭静
恭喜郭静~好音乐不寂寞 连中四元~ 2008上半年KKBOX华语点播排行榜 TOP30 01.擦肩而过 - 李圣杰 专辑:收放自如 02.为你写诗 - 吴克群 专辑:为你写诗 03.终於说出口 - 小宇 专辑:小宇同学就是我 04.下一个天亮 - 郭静(Claire)下一个天亮 05.
-
habitude acquise:习得习惯
-de quaternalite de Klein 克莱因四元群28 | habitude acquise 习得习惯54 | heredite 遗传76
-
quaternion hyperbolic space:四元数双曲空间
quaternion group 四元群 | quaternion hyperbolic space 四元数双曲空间 | quaternion ring 四元数环
-
quaternion function:四元数函数
quaternion field 四元数体 | quaternion function 四元数函数 | quaternion group 四元群
-
quaternion group:四元群
quaternion function 四元数函数 | quaternion group 四元群 | quaternionic vector 四元数向量
-
quaternion group:四元数群
四元数|quaternion | 四元数群|quaternion group | 似然|likelihood
-
generalized quaternion group:广义四元数群
广义四元数环|generalized quaternion ring | 广义四元数群|generalized quaternion group | 广义特征[标]|generalized character, virtual character
-
quaternionic vector:四元数向量
quaternion group 四元群 | quaternionic vector 四元数向量 | queue 排队