- 更多网络例句与同调模相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Let L and P be Lie color algebras and let M be a graded module over P, the crossed modules which make M as their kernal and P as their cokernal are considered. It is shown that under a suitable equivalent relation, there is a bijection between the set of the equivalent classes CML and the homogeneous components of degree zero of H~3.
从交叉模的定义出发,对于给定的Lie color代数L,P以及阶化P模M,考虑所有以M为核、以P为余核的L的交叉模,在这些交叉模之间定义了一个等价关系,由此得到交叉模的等价类集CML,证明了CML与三维上同调群H~3的零次齐次部分之间存在一一对应,从而可以利用三维上同调群对Lie color代数的交叉模进行分类。
-
The aim of this paper is to study the category of modules over a triangular matrix rings and its homological properties.
本文共分四章,目的是研究三角矩阵环上的模范畴及其同调性质。
-
The injective rings play an important role in the study of rings and categories of modules . First , we introduce the notion of ann-injective rings and CT-injective modules .Second,we make an inquiry into a series of their properties.Third,we give the definition of homological dimension of CT-injective modules.At last,we give the definition of FGT rings which is the extension of cogenerator rings.
本文对环与模范畴中一重要的模类—内射模进行了延拓,引入了ann -自内射环以及CT -内射模的概念,探讨了它们一系列的性质,并定义了CT -内射模的同调维数,最后对余生成子环进行推广得到了FGT -环,讨论了它与CT -内射环的关系以及它的一些性质。
-
It proves that the first cohomology group of Block Lie algebraL with coefficients inL-module V is trivial.
证明了系数在模V上的Block型李代数的一阶上同调群是平凡的。
-
The first 10 chapters study cohomolgy of open set in Euclidean space,treat smooth manifolds and their cohomology and end with integration on manifolds.
全书分四章:范畴与函子及其在模论中的应用;特殊模与相应的维数;环模复形的同调理论;谱序列。
-
The cohomology of q-polynomial coalgebras with coefficients in trivialcomodule K are also determined(see Theorem 6.3.11).Having obtained Theorem 5.2.3 andTheorem 5.2.4,we determine(see Theorem 7.2.6)all the nonzero 〓.
对于这一类q-多项式余代数,我们决定了(见定理6.3.11)系数在它的平凡余模K中的上同调,有了定理5.2.3与定理5.2.4以后,我们决定了(见定理7.2.6)所有非零的〓。
-
When it came to 1940s, with the springing up of homological algebra, module theory went a step further.
到了四十年代,由于环论的需要以及同调代数的兴起,模的理论更进一步得到了发展。
-
So in chapter 2, we use P-flat and P-injective modules to characterize some important rings, like SF-rings, Von Neumann regular rings and Coherent rings, etc. In chapter 3, we introduce the homological dimension of P-flat and P-injective modules.
众所周知,正是由于研究各类模以及它们的同调维数,人们才能对环得到更深层次的性质的描述,所以在第二章中,我们就利用了P-平坦模与P-内射模来刻划几种重要的环,如SF环、Von Neumann正则环、凝聚环等。
-
The research about the subject largely developed and extended the classical results about homological algebra.The theory of relative homological dimensions of modules and rings are the main research field in the subject.
关于这门学科的理论研究,极大的丰富和发展了同调代数的经典结果,而环与模的相对同调维数理论是相对同调代数这一门学科的重要研究领域。
-
In this dissertation,we concentrate on the homological properties of DG mod-ules over connected DG algebras and study various homological invariants.
本文以连通DG代数上的DG模范畴为研究对象,系统地研究了连通DG代数上的DG模的同调性质及各种同调不变量。
- 更多网络解释与同调模相关的网络解释 [注:此内容来源于网络,仅供参考]
-
cohomological dimension of modules:模的上同调维数
模的拟同构|quasi-isomorphism of modules | 模的上同调维数|cohomological dimension of modules | 模的稳定同构|stable isomorphism of modules
-
relative cohomology group:相对上同调群
相对内射模|relative injective module | 相对上同调群|relative cohomology group | 相对同调群|relative homology group
-
cohomology module:上同调模
上同调类|cohomology class; cohomology class | 上同调模|cohomology module | 上同调平凡模|cohomologically trivial module
-
cohomology spectral sequence:上同调谱序列
上同调平凡模|cohomologically trivial module | 上同调谱序列|cohomology spectral sequence | 上同调群|cohomology group; cohomology group
-
homology module:同调模
同调论|homology theory | 同调模|homology module | 同调群|homology group; homology group
-
waveguide dispersion:波导色散
飞秒锁模雷射在光频计量的应用文/彭锦龙,安惠荣摘要锁模雷射在频域上由许多等间距同调的光梳(optical frequency comb)所组成,每一支光梳的频率等於雷射脉冲重复飞秒锁模雷射在光频计量的应用这种光纤的波导色散 (waveguide dispersion)比传统光纤容易操控,