英语人>词典>汉英 : 同宿 的英文翻译,例句
同宿 的英文翻译、例句

同宿

基本解释 (translations)
chummage

更多网络例句与同宿相关的网络例句 [注:此内容来源于网络,仅供参考]

So before applying Mather's theorem of connecting orbits to concrete Hamiltonian system, we have to check whether the set W〓 is empty or not, and which cohomology classes are C-equivalent. In present paper, by investigating the topological structure of action minimizing sets near a co-dimensional one torus which is preserved under generic perturbations and becomes hyperbolic in nearly integrable Hamiltonian system.

与传统的Poincaré-Melnikov方法相比,我们方法明显优越之处在于,一方面我们的方法不仅可以得到双曲环面之间的异宿轨道,而且当该环面附近的其它环面破裂时,可以得到不同Mather集之间的连接轨道,另一方面,我们把异宿轨的存在性的证明转化为双曲环面极小同宿轨的某种弱孤立性的证明,所需条件比Poincaré-Melnikov方法弱得多。

We study cuspidal loop bifurcation、 Homoclinic or double Homoclinic bifurcation、 Hopf bifurcation and obtain the necessary conditions to generate limit cycles by using the coefficients of the expansion of the first Melnikov function.

利用一阶Melnikov函数的展开式的系数研究了尖点环分支、同宿分支、双同宿分支和Hopf分支,并给出了产生极限环的充分条件。

An existence theorem concerning denumerable 1-homoclinic orbits and countable families of 1-periodic orbits was given under a generic condition; and an intuitionistic de script ion about those orbits was also given.

证明在通有条件下,该异宿环附近存在可数无穷多条1-同宿轨,和可数无穷多个1-周期轨的单参数族,同时对这些周期轨和同宿轨作了直观描述。

In Chapter 3, a certain polynomial Hamilton system with 3 degree is given. By elliptic integral formulas, the monotonicity of the periodic orbits of this system is verified.

在众多文章中,讨论次谐轨的分岔都需要一个条件,那就是在同宿轨附近的周期轨是单调的,第三章给出了一个具体的三次平面Hamilton系统,利用椭圆积分公式验证了这个系统的一对同宿轨附近的周期轨的周期是单调的,这包含了三种情况,周期轨在右边同宿轨内部,在左边同宿轨内部以及在整个同宿轨圈外部。

For the homoclinics taking on values in the unbounded domain, in order to apply the usual "Mountain Pass " theorem, A compact embedding theorem is proved.

为克服同宿解取值于无界域而缺乏自然紧性,证明了一个紧嵌入定理,从而可以利用通常的山路引理与对称山路引理获得同宿解的存在性与多重性条件。

In the paper we consider a wide class of slow-fa.st second order systems and give sufficient conditions for the existence of a singular limit cycle related to a homoclinic orbit.

本文研究一类正二阶快-慢系统中奇性同宿轨道和极限环,并且给出了此系统存在奇性同宿轨道和极限环的充分条件。

Melnikov method is employed to study the bifurcations and chaos of homoclinic and subharmonic orbits for two pendulum systems.

用Melnikov方法研究具有弱阻尼与参数激励的单摆以及倒摆运动的同宿轨道分岔、次谐分岔和混沌现象,得到了发生同宿轨道分岔、次谐分岔和混沌的临界参数,并将所得理论结果与倒摆运动的实验结果进行了比较与讨论。

At first, we give the more precisely expression of the system in some sufficiently small neighborhood of the saddle point under some suitable transformation, and use the foundational solutions of the linear variational equation of the unperturbed system along the homoclinic or heteroclinic orbits as the demanded local coordinate system.

首先,我们在鞍点的充分小邻域内给出系统在适当的变换下的更加精确的表达形式,利用未扰系统沿同宿,异宿环的线性变分方程的基本解组作为系统在同宿,异宿环的小管状邻域内的新的局部坐标系。

In Chapter Ⅲ, the global stability and global attractivity of some planar autonomous systems are dealed with.

第二章考虑平面自治系统同宿轨族的一些定性性态,证明了系统至多存在一个最大椭圆扇形,得到此系统的轨线趋于奇点及同宿轨族、闭轨族、双曲扇形和椭圆扇形的存在性与不存在性的充分或充要条件。

The presence of homoclinic tangencies and homoclinic intersection makes it very difficult, sometimes even impossible, to estimate the shadowing trajectory of the non-hyperbolic nonlinear system.

摘要同宿切面和同宿截面的存在使得非双曲线型非线性系统重影轨迹的估计变得十分困难。

更多网络解释与同宿相关的网络解释 [注:此内容来源于网络,仅供参考]

chummy:亲密的/合得来的/密友

chummage /同宿/合住/房租/ | chummy /亲密的/合得来的/密友/ | chump /大木片/大肉片/木头人/

motional orbits:运动轨道

同宿解:Homoclinic solutions | 运动轨道:motional orbits | 周期轨道:Periodic Orbits

periodic orbit:周期轨

同宿轨:homocilnic orbit | 周期轨:periodic orbit | 同宿轨:homoclinic orbit

stable manifold:稳定流形

这个轨道的最终命运.事实上半个世纪后,后来的数学家们发现这种现象在一般动力系统中是常见的,他们把它叫做稳定流形(stable manifold)和不稳定流形(unstable manifold)正态相交(intersects transversally)所引起的同宿交错网(homoclinic tangle),

chummage:同宿

chum 密友 | chummage 同宿 | chummery 同房间

chummage:房租

chum 结为密友 | chummage 房租 | chummage 同宿

chummage:同宿, 同居, 房租

chum with | 与住在一起 与同一寝室 | chummage | 同宿, 同居, 房租 | chummery | 同房间, 同宿

chummery:同房间

chummage 同宿 | chummery 同房间 | chummy 亲密的

chummery:同房间, 同宿舍

chummage | 同宿, 同居, 房租 | chummery | 同房间, 同宿舍 | chummy body | 折座敞车

Praesepe:鬼宿星团

通过追溯银河系中星体的运动,天文学家发现毕宿星团(Hyades)和鬼宿星团(Praesepe)约于六亿年前在同一块云中形成. 疏散星团通常按照罗伯特.特朗普勒(RobertTrumpler)1930年制定的分类法分类.