- 更多网络例句与同余群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
When form ring satisfies certain Λ-stable range condition, we use the results in [2]to prove the normality of a unitary congruence subgroup EU andan important commutator equation of unitary congruence subgroups.
在型环满足适当的Λ-稳定秩条件时,利用[2]中的结果证明了酉群的同余子群EU的正规性,建立了酉群的同余子群之间的一个换位子公式。
-
Therefore, joins of good congruence on a regular semigroup is a good one.
众所周知,正则半群上的同余都是好同余。
-
In chapter two of this paper, we introduce the transitivity, which is an important definition in the 1-permutation group.
在第三章,我们介绍了格序置换群的凸同余,并研究了可迁格序置换群的凸同余与块所决定的可迁格序置换群的分类;讨论了可迁格序置换群的凸同余和块的性质以及它们之间的关系。
-
By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup;(2) RegS is a completely regular semigroup;(3) R(superscript *) is the smallest semilattice congruence on S;(4) Each R-class T(subscript α) on RegS is a right group;(5) T(subscript α)G(subscript α)×E(subscript α), where G(subscript α) is a group, E(subscript α) is a right zero semigroup.
利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1) S为拟完全正则半群;(2) RegS为完全正则半群;(3) R为S上的最小半格同余;(4) RegS上的每个R-类T为右群;(5) TG×E,其中G为群,E为右零半群。
-
A Green's relation of the a dditive redect of an idempotentsemiring S is a congruence of the semiring S, but Green's relation of the multiplicative redect of S need not be.
幂等元半环S的加法半群上的Green关系是半环S的同余,然而S的乘法半群上的Green关系未必是S上的同余。
-
We also prove that the lattice of group congruences on a regular semigroup is isomorphic to the lattice of its full admissible subsemigroups.
另外,还证明了正则半群的群同余格同构于它的完全容许子半群的格。
-
Two complete congruences on the congruence lattices of regular semigroups with Q-inverse transversal s are analysed.
研究了具有Q-逆断面的正则半群上的同余格Con上的等价关系W和Q,它们都是Con上的完全同余,这些完全同余的每一个类是区间,给出了每一个类的极大、极小同余的表示。
-
Special congruences are introduced in partialAbelian semigroups and it is shown that under some condition the quotient in-duced by a special congruence is also a partial Abelian semigroup.
我们引入了其上的特殊同余,在一定条件下,证明了该同余类所诱导之商仍是部分Abelian半群。
-
Since there is a close connection between principal filters and the smallest complete semi-lattice congruences on a po-semigroups, the study of the structure of filters has attracted a number of authors. For example, Kehayopulu, Xie X.Y, Cao Y.
在偏序半群中,由于主滤子同最小完全半格同余乃至完全半格同余有着密切的联系,又主滤子在偏序半群结构的研究中起到至关重要的作用,因而对滤子结构的研究吸引了众多学者的关注。
-
At the beginning the representatives of elementary rectangular band of E-unitary in-verse semigroups is studied, with the congruences on lattices and on completely simplesemigroups the congruences and congruence lattices on elementary rectangular band ofE-unitary inverse semigroups are described.
首先研究了E-酉逆半群基本矩形带的结构表示形式,用半格上的同余和完全单半群上的同余刻画了E-酉逆半群基本矩形带的上的同余和同余格。
- 更多网络解释与同余群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
coideal:上理想
cohomotopy group 上同伦群 | coideal 上理想 | coimage 余象
-
congruence group:同余群
congruence 同余式 | congruence group 同余群 | congruence method 同余法
-
the least group congruence:最小群同余
分配格同余:distributive lattice congruence | 最小群同余:the least group congruence | 理想同余关系:Ideal congruence
-
congruence method:同余法
congruence group 同余群 | congruence method 同余法 | congruence of lines 线汇
-
congruence relation:同余关系
congruence of lines 线汇 | congruence relation 同余关系 | congruence subgroup 同余子群
-
congruence subgroup:同余子群
congruence relation 同余关系 | congruence subgroup 同余子群 | congruence zeta function 同余函数
-
principal congruence subgroup:主同余子群
主同余|principal congruence | 主同余子群|principal congruence subgroup | 主象征|principal symbol
-
congruence zeta function:同余函数
congruence subgroup 同余子群 | congruence zeta function 同余函数 | congruent 同余的
-
group congruences:群同余
the least group congruences相关词的翻译: | 群同余:group congruences | 最小群同余:the least group con-gruence
-
group congruences:相关词的翻译
group congruences的翻译: | group congruences相关词的翻译: | 最小群同余:the least group congruences