- 更多网络例句与同余关系相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper, we discuss some kinds of special filters and congruence relation in fuzzy algebraic system MTL which is used extensively. The conceptions of the special filter are fuzzified in terms of the fuzzy set of Zadehs theories and further study them by way of logic algebra of n-value.
本文在具有广泛应用的模糊逻辑代数系统MTL-代数中,讨论了几类特殊滤子和同余关系,并且进一步用多值逻辑代数的方法研究它们。
-
By applying the definition of coset , the author first defines that ρ is one of the equivalent relations in G, then gives the pro of that ρ is a congruence relation.
由陪集的定义解释问题,首先确定了ρ是G中的一个等价关系,然后给予了ρ是同余关系的几种证明。
-
Is proved to be a residuated lattice. In the second chapter, the concept of congruence relation on a residuated lattice is introduced. It is proved that the quotient algebra of a residuated lattice about the congruence relation is still a residuated lattice. Then as a generalization of the congruence relation, the concept of fuzzy congruence relation is brought in.
本文的第二章首先定义了剩余格上的同余关系,证明了剩余格中的滤子对应一个同余关系,并由该同余关系确定的商代数仍是剩余格;然后将同余关系自然推广,定义了Fuzzy同余关系,证明了Fuzzy同余关系与Fuzzy滤子是一一对应的。
-
Chapter three: Define fuzzy congruence relation of MTL-algebra, prove that fuzzy fiter and fuzzy congruence relation is a bijective function in MTL-algebra, quotient algebra induced by congruence relation still forms a MTL-algebra; Introduce the relation between some kinds of fiters and fuzzy filters maitained above in IMTL-algebra,i.e. BR_0 algebra, which is a MTL-algebra satisfied inversely odering and involutive relation.
第三章:定义了MTL-代数中的Fuzzy同余关系,证明了MTL-代数中Fuzzy滤子与Fuzzy同余关系是——对应的,由同余关系所诱导的商代数依然构成一个MTL-代数;介绍了在满足逆序对合对应的MTL-代数-IMTL-代数,即BR_0-代数中上述几中特殊滤子,Fuzzy滤子之间的关系。
-
In this thesis, we defined duality Fuzzy relation in a pointwise Fuzzy set by a set of duality Fuzzy point. Then we defined Fuzzy congruence and Fuzzy rough set in Fuzzy semigroups.
本文把二维模糊点作成的集合定义为一个点态化模糊集上的模糊二元关系,进一步定义模糊同余关系,并通过它又定义点态化模糊集上模糊粗糙子集,并研究了它们的一些性质。
-
It introduces the concept of power semigroup, studies the relations between homomorphism and congruence of power semigroup and obtains some perfect results.
给出了幂半群的概念,研究了幂半群的同态与同余关系,讨论了它们之间的关系,并得到了一些理想的结果。
-
In the sense of cutset, the relation between the rough set of a cutset and the cutset of a rough set, a fuzzy rough set of a fuzzy primary ideal in a semigroup is proved to be its fuzzy primary ideal. The sixed chapter is Rough Primary Ideals and Rough Fuzzy Primary Ideals in rings, the corresponding results of a semigroup are generalized in a ring. The last chapter is Rough-fuzzy Subsemirings in Semirings, First, the lower and upper rough-fuzzy semirings together with the left and the right ideal are defined.
利用截集意义下,截集的粗糙集与粗糙集截集的关系,证明了在完备同余关系下半群中的模糊准素理想的粗糙集是模糊准素理想;第六章是环中粗准素理想和粗模糊准素理想,将半群中的相(来源:A70BC论文网www.abclunwen.com)应结果推广到环中;第七章是半环中的粗模糊子半环,首先,给出上粗模糊子半环及上粗模糊理想等概念,并研究了它们的性质。
-
As a result, when in , subset of MA, obtained by imposing constraints on MA, AL is intensional because =L is equivalent with ≡.
在考虑了复制操作和限制操作的情况下,提出了逻辑等价的协归纳操作描述,并利用协归纳关系与进程结构同余关系进行比较,证明了若对MA加上约束条件得到子集MAsynIF,此时逻辑等价与结构同余关系是等价的,即AL在MAsynIF中是内涵的。
-
This paper analyses and systematically studies the structure of some special quantales (such as characterization of idempotent left-side spatial quantales, characterization of simple quantales); relations among elements of quantale; inner links between prequantales and quantales; relations among nuclei and quotiont quantales and congruences of quantale; relations between closed filters and closed maps; categorical properties of category Quant.
本文对Quantale的元素之间、核映射与商Quantale以及同余关系之间的关系,特殊Quantale的结构(如幂等左侧空间式Quantale的特征,单纯Quantale的特征等),Prequantale和Quantale之间的内在联系,Quantale中的闭滤子和闭映射以及Quantale范畴Quant的性质等作了较为系统的研究。
-
This paper analyses and systematically studies the structure of some special quantales (such as characterization of idempotent left- side spatial quantales, characterization of simple quantales); relations among elements of quantale; inner links between prequantales and quantales; relations among nuclei and quotient quantales and congruences of quantale jrelations between closed filters and closed maps ;categorical properties of category Quant.
本文对Quantale的元素之间、核映射与商Quantale以及同余关系之间的关系,特殊Quantale的结构(如幂等左侧空间式Quantale的特征,单纯Quantale的特征等),Prequantale和Quantale之间的内在联系,Quantale中的闭滤子和闭映射以及Quantale范畴Quant的性质等作了较为系统的研究。
- 更多网络解释与同余关系相关的网络解释 [注:此内容来源于网络,仅供参考]
-
left cancellation law:左相消率
least upper bound 最小上界 | left cancellation law 左相消率 | Left congruence relation 左同余关系
-
the least group congruence:最小群同余
分配格同余:distributive lattice congruence | 最小群同余:the least group congruence | 理想同余关系:Ideal congruence
-
congruence of lines:线汇
congruence method 同余法 | congruence of lines 线汇 | congruence relation 同余关系
-
congruence relation:同余关系
congruence of lines 线汇 | congruence relation 同余关系 | congruence subgroup 同余子群
-
left congruence relation:左同余关系
左分量 left component | 左同余关系 left congruence relation | 左同余的 left congruent
-
congruence subgroup:同余子群
congruence relation 同余关系 | congruence subgroup 同余子群 | congruence zeta function 同余函数
-
congruent melting:同成分熔融
congruent matrix | 相合矩阵 | congruent melting | 同成分熔融 | congruent relation | 同余关系
-
least dominating set:小控制集
同余格上的同余关系:Congruence relations on congruence lattice | 小控制集:least dominating set | 最小二乘法:Least squares
-
penetrating oil:渗透(润滑)油
votaress 女性信徒, 女爱好者 | penetrating oil 渗透(润滑)油 | left congruence rejection 左同余关系
-
Congruence lattices:同余格
同余对:Congruence pair | 同余格:Congruence lattices | 同余关系:congruence relation