- 更多网络例句与同为永远的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
It was already candle-light when we reached the hamlet, and I shall never forget how much I was cheered to see the yellow shine in doors and windows; but that, was the best of the help we were likely to get in that quarter For - you would have thought men would have been ashamed of themselves - no soul would consent to return with us to the 'Admiral Benbow.
当我们到达村子时,已是掌灯时分,我永远也不会忘记当我看到窗里橙黄色的灯光时,我是何等的雀跃。但是就这,就像后来被证实的那样,是我们在这个地方所能得到的最大的援助。因为--你会想到,人们该为他们自己感到羞耻--没有人愿意答应同我们一起回"本葆海军上将"旅店。
-
Two complemented lattices L_1, L_2 are said to be of the same "type" if they have identical sets of tautologies.
一个具有最小元O及最大元I的格L,如果在其中又定义了一个单值的1元运算&′&能适合O′=I,I′'=O,则称L为一可补格,一个命题演算良构式A(设只含命题连接词A,V,~),如果命它的变数在L中任意取值且将A,V,~分别解释为L中的运算∩,U,′时,A永远得到值I,则称A为L上的恒I式,当两个可补格L_1,L_2上的恒I式集相同时,称L_1,L_2为同型的,本文就是讨论可补格按同型关系分类的问题,所得结果如下:定理设有限可补格L_2适合条件:,存在一良构式A能使则任一可补格L_1与L_2同型的一个充分必要条件是:(A_1)。
- 更多网络解释与同为永远的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
coeternal:同为永远的
同外延homepitaxy | 同为永远的coeternal | 同位parParityapposition
-
coeternal:同为永远的/永远共存的
coetaneous /同时代的/ | coeternal /同为永远的/永远共存的/ | coeval /同时代的/同时代的人/