- 更多网络例句与可约的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This text from 艾森斯坦 because of distinguishing the relevant conclusion between method and number theory inside gaved a few and whole coefficient polynomial can't invite of judge the method, discussed at the same time not higher than four times whole coefficient polynomial can invite sex problem, get some three times, four times whole coefficient polynomial can invite sexual and simple judging the method.
本文由艾森斯坦因判别法及数论中的有关结论给出了几个整系数多项式不可约的判定方法,同时讨论了不高于四次的整系数多项式的可约性问题,得到了某些三次,四次整系数多项式可约性的简易判定方法。
-
By defining restricted representation,we get the necessary andsufficient condition for all restricted representations of a restricted Liesuperalgebra to be completely reducible.
最后,通过定义限制表示,得到了一个限制李超代数的所有限制表示是完全可约的充要条件。
-
Finally, the author proves the sharp bound for the indices of convergence of n*n reducible Boolean matrices with f〓≥2 the writer lets f〓 be the greatest common divisor of the distinct lengths of the elementary cycles of the associated digraph D (A for a reducible Boolean matrix A , and characterizes the matrices with the largest index.
最后,设f〓为可约布尔矩阵A的伴随有向图D的所有圈长的最大公约数,当f〓≥2时,我们得到了可约布尔矩阵幂敛指数的一个上界和达到最大幂敛指数的矩阵的完全刻划。
-
For different polynomials g, if the characteristic polynomial of a n matrix A is irreducible, then we get some theorems to determine matrix equations g =A solvable; if it is reducible, then, to see n-dimension space vectors M over a field F as F-module, we use module theory to determine these equations solvable such that it is simpler and clearer to investigate these questions.
对于不同多项式g,当n阶矩阵A的特征多项式为不可约的,我们给出了矩阵方程g=A有解的判定定理;当A的特征多项式为可约的,把域F上的n维线性空间M作为由A导出的F -模,我们利用模论知识来决定矩阵方程g=A有解性,从而使这一问题变了简单,研究思路更加清晰。
-
A configuration is reducible if no minimal 5 chromatic plane graph can contain it.
如果没有极小5色平面图能包含某个构形,就说此构形是可约的。
-
This paper by Eisenstein and Criterion On a few of the conclusions presented several integer coefficients irreducible polynomials way of judging, but the discussion of not more than four times the whole of the polynomial coefficients can be about issues, by some three to four times the entire polynomial coefficient about the summary judgment method.
本文由艾森斯坦因判别法及数论中的有关结论给出了几个整系数多项式不可约的判定方法,同时讨论了不高于四次的整系数多项式的可约性问题,得到了某些三次,四次整系数多项式可约性的简易判定方法。
-
Taking the active network as a research task, the input accessibility, the Coates graph of matrix and graph transmission etc are used to analyze the relation between reducibility of the coefficient matrix of the state equation and the electric separability of the network or the electric accessibility of the network for the first time, acquiring sufficient and necessary conditions that coefficient matrix of the state equation is reducible. Network Graph Theory, Matrix Theory and System Theory over F etc are used to derive the structural controllability criterion of the passive network over F for the first time. Then according to these theoretic results, the structural controllability problems of the active network over F are studied, acquiring several structural controllability conclusions of the active network.
率先将状态方程的输入可达、矩阵的Coates图、流图传输系数等概念和方法引入到对F上有源电网络的研究,研究了网络状态方程的系数矩阵的可约性与网络电气可断性或电气可达之间的关系,研究了F上有源电网络的能控性问题,获得了状态方程的系数矩阵可约的充分必要条件、F上有源电网络系统的结构能控性判据等新的结论。
-
We define two kinds of reducible Dirac structures, discuss the problem on the reduction of protobialgebroids.
我们定义了两类可约的Dirac结构,讨论了proto双代数胚的约化问题。
-
We introduce the notion of characteristic pairs and give the definition of dual characteristic pairs of Dirac structures on Lie bialgebroids. Using the dual characteristic pairs, we give the if and only if conditions for which a maximally isotropic subbundle of the double of a Lie bialgebroid is a Dirac structure.
本文在李双代数胚上,引入了Dirac结构的特征对并给出对偶特征对的概念,利用对偶特征对,给出李双代数胚double的极大迷向子丛是Dirac结构的充要条件;其次,分别利用特征对与对偶特征对,将可约Dirac结构分为第一类可约与第二类可约,在此基础上,建立Poisson流形的两类对应约化定理。
-
For most matrix of A,the linear diffrentiable equations with quasi-periodic finitely differentiable coefficients are reducible.
证明了对大多数的矩阵A,一类系数为有限次可微的拟周期线性常微分方程组是可约的。
- 更多网络解释与可约的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
completely reducible group:完全可约群
completely reducible 完全可约的 | completely reducible group 完全可约群 | completely regular filter 完全正则滤子
-
completely reducible:完全可约的
completely primary ring 完全准素环 | completely reducible 完全可约的 | completely reducible group 完全可约群
-
factorable:可约的
irreducible不可约的 | factorable可约的 | itinerant巡回的
-
irreducible:不可约的
irradicable不能根除的 | irreducible不可约的 | factorable可约的
-
jordan measurable:约当可测的
jordan matrix 约当矩阵 | jordan measurable 约当可测的 | jordan measure 约当测度
-
reducibility:可约性; 可化简性
reduce 简化 | reducibility 可约性; 可化简性 | reducible 可约的;可化简的
-
reducibility criterion:可约性判则
可约性 reducibility | 可约性判则 reducibility criterion | 特征型的可约性 reducibility of a characteristic form
-
polynomial reducible:多项式可约的
多項式模組 polynomial module | 多項式可約的 polynomial reducible | 多項式分解 polynomial reduction
-
reducible linear representation:可约的线性表示
reducible indirect hernia 可复性腹股沟斜疝 | reducible linear representation 可约的线性表示 | reducible procedure 可约过程
-
reducible:可约的;可化简的
reducibility 可约性; 可化简性 | reducible 可约的;可化简的 | reductio ad absurdum 反证法; 归谬法