- 更多网络例句与可约多项式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
It is proved that if'sparse NP complete sets under polynomial-time Turing reductions exist'then 'SAT is polynomial-time non-adaptively search reducible to decision', and that if 'P is not equal to NP'then either'SAT is not polynomial-time non-adaptively search reducible to decision'or'SAT is not polynomial-time truth-table reducible to bounded approximable sets', and that if'P is not equal to NP'then'sparse complete sets for NP under polynomial-time disjunctive reductions do not exist'.
因为用现有的证明技术不可能绝对地解决这个假设,本文研究了这个假设与其他关于SAT结构性质的假设之间的关系,证明了如果'NP有多项式时间图灵归约下的稀疏完全集'则'SAT是多项式时间并行地搜索归约为判定',以及如果假设'P不等于NP',则要么'SAT不是多项式时间并行地搜索归约为判定',要么'SAT不能用多项式时间真值表归约归约为有界可近似集'。
-
This text from 艾森斯坦 because of distinguishing the relevant conclusion between method and number theory inside gaved a few and whole coefficient polynomial can't invite of judge the method, discussed at the same time not higher than four times whole coefficient polynomial can invite sex problem, get some three times, four times whole coefficient polynomial can invite sexual and simple judging the method.
本文由艾森斯坦因判别法及数论中的有关结论给出了几个整系数多项式不可约的判定方法,同时讨论了不高于四次的整系数多项式的可约性问题,得到了某些三次,四次整系数多项式可约性的简易判定方法。
-
For different polynomials g, if the characteristic polynomial of a n matrix A is irreducible, then we get some theorems to determine matrix equations g =A solvable; if it is reducible, then, to see n-dimension space vectors M over a field F as F-module, we use module theory to determine these equations solvable such that it is simpler and clearer to investigate these questions.
对于不同多项式g,当n阶矩阵A的特征多项式为不可约的,我们给出了矩阵方程g=A有解的判定定理;当A的特征多项式为可约的,把域F上的n维线性空间M作为由A导出的F -模,我们利用模论知识来决定矩阵方程g=A有解性,从而使这一问题变了简单,研究思路更加清晰。
-
Therefore, a polynomial time algorithm for reducing the extended three partition problem to the reachability problem of the URV-PN is developed.
文中提出了扩展的三划分问题,指出扩展的三划分问题可多项式归约为唯一可达向量网系统可达性问题,因此给出了求解唯一可达向量
-
This paper by Eisenstein and Criterion On a few of the conclusions presented several integer coefficients irreducible polynomials way of judging, but the discussion of not more than four times the whole of the polynomial coefficients can be about issues, by some three to four times the entire polynomial coefficient about the summary judgment method.
本文由艾森斯坦因判别法及数论中的有关结论给出了几个整系数多项式不可约的判定方法,同时讨论了不高于四次的整系数多项式的可约性问题,得到了某些三次,四次整系数多项式可约性的简易判定方法。
-
On the region of rationality, what condition satisfies the integer polynomial only to have the reducibility?
摘要在有理数域上,满足什么条件的整系数多项式才具有可约性呢?
- 更多网络解释与可约多项式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
bijection, bijective, one-one correspondence:一一映射
一一可归约性|one-one reducibility | 一一映射|bijection, bijective, one-one correspondence | 一元多项式|polynomial of one indeterminate
-
irreducible matrix:不可约阵
irreducible markov chain 不可约马尔可夫链 | irreducible matrix 不可约阵 | irreducible polynomial 不可约多项式
-
reducible equation:可约方程
reducible element 可约元素 | reducible equation 可约方程 | reducible polynomial 可约多项式
-
reducible polynomial:可约多项式
reducible equation 可约方程 | reducible polynomial 可约多项式 | reducible representation 可约表示
-
polynomial reducible:多项式可约的
多項式模組 polynomial module | 多項式可約的 polynomial reducible | 多項式分解 polynomial reduction
-
polynomial reducible:多项式可归约[的]
并行计算论题 parallel computation thesis | 多项式可归约[的] polynomial reducible | 多项式可转换[的] polynomial transformable
-
reducible representation:可约表示
reducible polynomial 可约多项式 | reducible representation 可约表示 | reducible topological space 可缩拓扑空间
-
reducible representation:可约表现
可约多项式 reducible polynomial | 可约表现 reducible representation | 可约集 reducible set
-
reducible representation:可约表示法
"reducible polynomial","可约多项式" | "reducible representation","可约表示法" | "reducible system","可简化系统"
-
polynomial transformable:多项式可转换[的]
多项式可归约[的] polynomial reducible | 多项式可转换[的] polynomial transformable | 多项式有界[的] polynomial-bounded