英语人>词典>汉英 : 可猜想的 的英文翻译,例句
可猜想的 的英文翻译、例句

可猜想的

基本解释 (translations)
conjecturable

更多网络例句与可猜想的相关的网络例句 [注:此内容来源于网络,仅供参考]

It consists of the next three aspects: firstly, we study Murthys' open problem whether the augmented matrix is a Q0-matrix for an arbitary square matrix A , provide an affirmable answer to this problem , obtain the augmented matrix of a sufficient matrix is a sufficient matrix and prove the Graves algorithm can be used to solve linear complementarity problem with bisymmetry Po-matrices; Secondly, we study Murthys' conjecture about positive semidefinite matrices and provide some sufficient conditions such that a matrix is a positive semidefinite matrix, we also study Pang's conjecture , obtain two conditions when R0-matrices and Q-matrices are equivelent and some properties about E0 ∩ Q-matrices; Lastly, we give a counterexample to prove Danao's conjecture that if A is a Po-matrix, A ∈ E' A ∈ P1* is false, point out some mistakes of Murthys in [20] , obtain when n = 2 or 3, A ∈ E' A ∈ P1*, i.e.

本文分为三个部分,主要研究了线性互补问题的几个相关的公开问题以及猜想:(1)研究了Murthy等在[2]中提出的公开问题,即对任意的矩阵A,其扩充矩阵是否为Q_0-矩阵,给出了肯定的回答,得到充分矩阵的扩充矩阵是充分矩阵,并讨论了Graves算法,证明了若A是双对称的P_0-矩阵时,LCP可由Graves算法给出;(2)研究了Murthy等在[6]中提出关于半正定矩阵的猜想,给出了半正定矩阵的一些充分条件,并研究了Pang~-猜想,得到了只R_0-矩阵与Q-矩阵的二个等价条件,以及E_0∩Q-矩阵的一些性质;(3)研究了Danao在[25]中提出的Danao猜想,即,若A为P_0-矩阵,则,我们给出了反例证明了此猜想当n≥4时不成立,指出了Murthy等在[20]中的一些错误,得到n=2,3时,即[25]中定理3.2中A∈P_0的条件可以去掉。

In fact, we point out that it is true for the density matrix of the nearest point graph.

证明了这个度数条件是三体态可分的必要条件,于是猜想它也是充分条件。

This problem dates back to 1611, when Johannes Kepler conjectured that the best packing arrangement for identical spheres was arranging them in what is now called face centered cubic packing - similar to how one sees cannon balls stacked.

这个问题可追溯到1611年约翰尼斯·开普勒提出堆积等大球体最佳方法的猜想(译者注:当等大球体按照--球心位于正方体各面的中心上--的形式,并且将第一层摆放成六角形时,它们占用的空间最小,对空间的利用率可以超过74%),现在把这个方法叫做面心立体堆积法--类似于加农炮弹的堆积方式。1998年,安娜堡密西根大学教授托马斯·C·黑尔斯证明了这个猜想。

And in the same paper, Rose proved that if G is a graph with q edges, then graph K_{2q+1} can be partitioned into 2q+1 graphs which are isomorphic to graph G.

Rose在文献[2]中指出了Ringel猜想的证明与优美树猜想有关,并给出了一般的结论:设G是一个q条边的优美图,那么K_2q+1可分解出2q+1个图都同构于G。

It is easy to see that Ohba's conjecture is true if and only if it is true for complete multipartite graphs.

在2002年,Ohba给出如下猜想:每一个顶点个数小于等于2x+1的图G是色可选择的。

When Rorty speaks of the 'cautionary' use of the concept of truth, I take him to mean that it is often useful to remind people that being justification isn't necessarily being right.

当罗蒂谈到对真概念的警惕,我猜想他的意思是提醒人们,可确定的并不必定代表是正确的。

In this paper we show that graphs K6,3,2*(k-6),1*4 (k ≥ 6) is chromatic choosable and hence Ohba's conjecture is true for the graphs K6,3,2*(k-6),1*4 and all complete k-partite subgraphs of them.

在本文我们证明图K6,3,2*(k-6),1*4(k≥6)是色可选择的,从而对图K6,3,2*(k-6),1*4(k≥6)和它们的所有完全k-部子图证明了Ohba猜想成立。

Because that vote block can be perceived, or is perceived rather, as a potential swing block vote

因为选举结果可猜想,或猜想的作为一种潜在的动摇力

Middle C is equivalent to 256 vibrations per second.

最可接受的猜想是,它们可以感受和理解通过地表传递的振动。

S.O.S Jonas Brothers lyrics By Larry Cheng I told you I made dinner plans for you and and me and no one else that don't include your crazy friends well I'm done with awkward situations empty conversations oooh, this is an S.O.

先说翻译:我告诉你我有了晚餐的计划只有你和我不包括你那些疯狂的朋友好了,我已经做好了准备面对这尴尬而空洞的对话 oooh ,这是一个求救信号不要再去猜想这是底线这是真的我将一切给你可现在,我的心脏碎成了两半而我无法找到另一半我就像走在碎玻璃上我相信在流血这将是一个我永远也不会接的电话因此,这个故事将在此完结对于这次失败的交流我放弃了 oooh ,这是一个求救信号不要再去猜想这是底线这是真的我将一切给你可现在,我的心脏碎成了两半而我无法找到另一半我就像走在碎玻璃上我相信在流血这将是一个我永远也不会接的电话当我再次见到你我不能再和你紧紧相拥因为那再也不可能了这只是奢望 oooh ,这是一个求救信号不要再去猜想这是底线这是真的我将一切给你可现在,我的心脏碎成了两半是啊!

更多网络解释与可猜想的相关的网络解释 [注:此内容来源于网络,仅供参考]

Albert:阿尔贝特

在证明中他们使用了类域论方面的重要定理--格伦瓦尔德定理. 这个猜想的证明,在当时的数学界是一件大事. 美国著名代数学家A.A.阿尔贝特(Albert)说:线性结合代数的理论,当决定所有有理可除代数的问题找到了解答的时候,也

circumspect:谨慎小心的,慎重的

inferable可以推论的,可猜想的,可暗示的 | circumspect谨慎小心的,慎重的 | obsequious卑躬屈膝的,拍马奉承的

conjecturable:可推测的,可猜想的

conj | 连接词, 连词 | conjecturable | 可推测的,可猜想的 | conjectural | 推测的, 好推测的

conjectural:推测的/好推测的

conjecturable | 可推测的,可猜想的 | conjectural | 推测的, 好推测的 | conjoin | (使)结合, (使)连结, (使)联合

Could I ever believe such a perfect surprise:那可真是個難以置信的驚喜

Being with you has opened my eyes跟妳在一起讓我大開眼界 | Could I ever believe such a perfect surprise?那可真是個難以置信的驚喜 | I keep asking myself, wondering how我一直問我自己,猜想著原因

inferable:可以推论的,可猜想的,可暗示的

parable寓言 | inferable可以推论的,可猜想的,可暗示的 | circumspect谨慎小心的,慎重的