- 更多网络例句与可构造存在证明相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按"序"最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
-
By means of deriving the approximate solution and a process of approaching iteration, we have shown that a general solution exists for a non-Newtonian compressible fluid in 3D bounded domains. The proof is based on an elementary energy method.
文章利用构造近似解和极限的过程证明了三维有界区域中非牛顿可压缩流体广义解的存在性,所用的证明方法为能量方法。
-
We prove that in every induced locally compact 〓fuzzy topological groupthere exist at least one regular fuzzy set-valued Haar measure.We define the fuzzymeasurable group and prove that the fuzzy set-valued Haar measure in a fuzzymeasurable group is essentially unique.We also construct the fuzzy topologicalstructure on a group by the fuzzy set-valued measure such that make it a fuzzytopological group.
证明了诱导局部紧〓模糊拓扑群上存在模糊集值Haar测度,定义了模糊可测群,通过对模糊可测群的研究证明了诱导局部紧〓模糊拓扑群上的模糊集值Haar测度本质上的唯一性,并利用模糊可测群上的模糊集值测度构造了群上的模糊拓扑结构使之成为模糊拓扑群。
-
From the above theorem,(1) compositional invariant security properties and constructive security properties are proved to exist, and (2) security properties are degraded under operators of process algebra, which is known as "bucket principle", i.e, a composed system cannot be securer than the weakest link of the system.
根据这一结果证明了复合不变性质和可构造安全性质在安全性质集上的存在性,并且在安全性质集合上证明了安全性质的"木桶原理",即复合系统的整体安全性不强于系统中最弱的部分。
-
First, we introduce and discuss the various methods of multivariate polynomial interpolation in the literature. Based on this study, we state multivariate Lagrange interpolation over again from algebraic geometry viewpoint:Given different interpolation nodes A1,A2 .....,An in the affine n-dimensional space Kn, and accordingly function values fi(i = 1,..., m), the question is how to find a polynomial p K[x1, x2,...,xn] satisfying the interpolation conditions:where X=(x1,X2,....,xn). Similarly with univariate problem, we have provedTheorem If the monomial ordering is given, a minimal ordering polynomial satisfying conditions (1) is uniquely exsisted.Such a polynomial can be computed by the Lagrange-Hermite interpolation algorithm introduced in chapter 2. Another statement for Lagrange interpolation problem is:Given monomials 1 ,2 ,.....,m from low degree to high one with respect to the ordering, some arbitrary values fi(i= 1,..., m), find a polynomial p, such thatIf there uniquely exists such an interpolation polynomial p{X, the interpolation problem is called properly posed.
文中首先对现有的多元多项式插值方法作了一个介绍和评述,在此基础上我们从代数几何观点重新讨论了多元Lagrange插值问题:给定n维仿射空间K~n中两两互异的点A_1,A_2,…,A_m,在结点A_i处给定函数值f_i(i=1,…,m),构造多项式p∈K[X_1,X_2,…,X_n],满足Lagrange插值条件:p=f_i,i=1,…,m (1)其中X=(X_1,X_2,…,X_n),与一元情形相似地,本文证明了定理满足插值条件(1)的多项式存在,并且按&序&最低的多项式是唯一的,上述多项式可利用第二章介绍的Lagrange-Hermite插值算法求出,Lagrange插值另一种描述是:按序从低到高给定单项式ω_1,ω_2,…,ω_m,对任意给定的f_1,f_2,…,f_m,构造多项式p,满足插值条件:p=sum from i=1 to m=Ai=f_i,i=1,…,m (2)如果插值多项式p存在且唯一,则称插值问题适定。
- 更多网络解释与可构造存在证明相关的网络解释 [注:此内容来源于网络,仅供参考]
-
constructive dilemma:构造二难推论
construction problem 准题 | constructive dilemma 构造二难推论 | constructive existence proof 可构造存在证明
-
constructive existence proof:可构造存在证明
constructive dilemma 构造二难推论 | constructive existence proof 可构造存在证明 | constructive mathematics 可构造数学
-
constructive mathematics:可构造数学
constructive existence proof 可构造存在证明 | constructive mathematics 可构造数学 | constructive ordinal number 可构造序数