英语人>词典>汉英 : 发展方程 的英文翻译,例句
发展方程 的英文翻译、例句

发展方程

词组短语
evolution equation · equation of evolution
更多网络例句与发展方程相关的网络例句 [注:此内容来源于网络,仅供参考]

We develop his ideas by finding some algebraic invariants under the adjoint actions of the group in addition to the Killing form and give a rigorous proof of the optimality of the one-parameter systems for the symmetry group of the given equations.

本文系统地研究了1+2维非线性发展方程的对称代数,证明了该方程容许一个七维李点对称群,利用Olver提出的方法,详细地建构了1+2维非线性发展方程的一维最优系统,在此基础上我们发展了他的方法,发现了除Killing型之外的其它六个在群伴随作用下的代数不变量,利用这些不变量证明了该最优系统的最优性。

By using the solutions of a new auxiliary elliptic equation,a direct algebraic method is proposed to construct the exact solutions of some nonlinear evolution equations.The main difference between this method and previous auxiliary elliptic equation methods is that the balance order becomes smaller after using the new auxiliary elliptic equation.Therefore,the derived algebraic equations are greatly simplified.

利用一个新的辅助椭圆方程将求解非线性发展方程精确解的问题转化为一个代数方程组进行求解,与已有的辅助椭圆方程法的主要不同是,应用这一新的辅助椭圆方程后降低了平衡次数,减少了所得的代数方程组的个数和方程的项数,从而大大地简化了代数方程组的求解。

Many natural phenomena and physical laws can be described by time dependent nonlinear differential equations, such as heat conduction equation, sound wave and elastic wave equation, reaction diffusion and convection diffusion equation, fluid and aerodynamics equations, etc.

大多数的自然现象与物理规律都可归结为与时间相关的非线性偏微分方程,诸如热传导方程、声波与弹性波方程、反应扩散与对流扩散方程、流体与气体力学方程组等发展方程

Finally, in the third section, by constructing some functional which similar to the conservation law of evolution equation and the technical estimates, we prove that in the inviscid limit the solution of generalized derivative Ginzburg—Landau equation converges to the solution of derivative nonlinear Schrodinger equation correspondently in one-dimension; The existence of global smooth solution for a class of generalized derivative Ginzburg—Landau equation are proved in two-dimension, in some special case, we prove that the solution of GGL equation converges to the weak solution of derivative nonlinear Schr〓dinger equation; In general case, by using some integral identities of solution for generalized Ginzburg—Landau equations with inhomogeneous boundary condition and the estimates for the L〓 norm on boundary of normal derivative and H〓 norm of solution, we prove the existence of global weak solution of the inhomogeneous boundary value problem for generalized Ginzburg—Landau equations.

第三部分:在一维情形,我们考虑了一类带导数项的Ginzburg—Landau方程,通过构造一些类似于发展方程守恒律的泛函及巧妙的积分估计,证明了当粘性系数趋于零时,Ginzburg—Landau方程的解逼近相应的带导数项的Schr〓dinger方程的解,并给出了最优收敛速度估计;在二维情形,我们证明了一类带导数项的广义Ginzburg—Landau方程整体光滑解的存在性,以及在某种特殊情形下,GL方程的解趋近于相应的带导数项的Schr〓dinger方程的弱解;在一般情形下,我们讨论了一类Ginzburg—Landau方程的非齐次边值问题,通过几个积分恒等式,同时估计解的H〓模及法向导数在边界上的模,证明了整体弱解的存在性。

The nonexistence of global weak solution to elliptic equation and the evolution equation, together with the nonexistence of local weak solution to hyperbolic equation is contained in this paper.

本文运用试验函数法研究了带有非局部源的偏微分方程的全局弱解的不存在性,内容包括椭圆方程、发展方程全局解的不存在性以及双曲型方程的局部弱解的不存在性。

We derived evolution equations of the corresponding Eu-clidean support functions.Finally we obtained that the solutions of the heat equation convergeto a point in infinite time,the solutions of the other equation converge to a point in a finite time

我们又得出相应的欧氏支撑函数的发展方程,最终得到热方程的解在无限时间时收敛于一点;另一发展方程的解在一个最大时间区间内存在,并且在有限时间内收敛于一点。

Carleman不等式及其在最优控制问题中的应用.Optimal control theory of distributed parameter systems mainly includes: Pontryagin's maximum principle; controllability; Hamilton-Jacobi equation (i.e., dynamic programming equation); time optimal control, etc.In this dissertation, we establish Pontryagin's maximum principle of optimal control problems governed by some nonlinear differential equations (parabolic differential equations, elliptic differential equations and 3-dimensional Navier-Stokes equations), which in particular could have local solut...

在这篇博士论文中,我们建立了非线性微分方程(包括抛物型微分方程,椭圆型微分方程以及3维Navier-Stokes方程)最优控制问题的庞特里雅金最大值原理,特别地,这些方程可能只有局部解或存在多解(我们称这样的系统为非适定系统,相应的最优控制问题为非适定最优控制问题),以及适定的非线性发展方程最优控制问题的庞特里雅金最大值原理;我们研究了phase-field系统的时间最优控制问题以及Boussinesq系统的局部内可控性。

Chapter 2 is devoted to study of exact solutions of the nonlinear evolution equations. Using solutions of a Bernoulli equation instead of tanh in tanh-function method we find some more general solutions of the KdV-Burgers-Kuramoto equation , and by using the nonlinear telegraph equation we show that there are many different choices on its balancing number m and the power n of the nonlinear term in Bernoulli equation by which we can recover the previously known solutions and also can derive new square root type solitary wave solutions. Exact solitary wave solutions for a surface wave equation are obtained by means of the homogeneous balance method. We also present an approach for constructing the solitary wave solutions and non-solitary wave solutions of the nonlinear evolution equations by using the homogeneous balance method directly, which is also used to find the steady state solutions, solitary wave solutions and the non-solitary wave solutions of the 2+1 dimensional dispersive long wave equations. The soliton-like solutions of the BLMP equation and the 2+1 dimensional breaking soliton equation are found by use of the symbolic-computation-based Method.

第二章中研究了非线性发展方程的精确解:用双曲正切函数法中的双曲正切函数换为Bernoulli方程的解的方法而给出KdV-Burgers-Kuramoto方程的精确解并用非线性电波方程为例说明了平衡数m和Bernoulli方程中非线性项的次数n有着多种选择的可能,它不但使我们能找到已知解而且也能找出新的根式孤立波解;用齐次平衡法给出一个曲面波方程的精确孤立波解,并提出直接用齐次平衡法寻找非线性发展方程的孤立波解、非孤立波解的方法,作为应用给出2+1维色散长波方程组等的定态解、孤立波解、非孤立波解等;用Symbolic-computation-basedMethod获得BLMP方程和2+1维破裂孤子方程的类孤子解;提出sine-Gordon型方程的直接求解方法,并获得sine-Gordon方程、双sine-Gordon方程、sinh-Gordon方程、MKdV-sine-Gordon方程和Born-Infeld方程等的精确孤立波解。

In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.

在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。

Chapter 5 and 6 are concentrated on the fundamental problem how to con-struct finite-dimensional and infinite-dimensional Liouville integrable Hamiltonsystem.Starting from two isospectral problems,Tu's scheme is applied to gen-erate the corresponding CKdV hierarohy and coupled Burgers hievachy,andthey are shown to be Liouville integrable Hamilton systems.Two spectral prob-lems,which contain three and four potentials respectively,are also studied byTu's scheme.Two new Liouville integrable Hamilton hierarchy are estab-lished.A new general approach using Lenard's gradient sequence is presentedto obtain Lax integrable hierarchy and their zero curvature representation,andsome examples are given.The nonlinearization procedure is applied to theeigenvalue problem of coupled Burgerrs hierarchy.It is shown that underBargmann constraint,the spatial part of the Lax pairs is nonlimearized to be afinite-dimensional Liouville completeiy integrable Hamilton system.

第五、六章研究如何从一个谱问题出发构造可积发展方程族及其零曲率表示、Hamilton结构和判断Liouville可积性:通过对二类具有2个位势的等谱问题直接研究,利用屠格式生成了耦合KdV族和耦合Burgers族,并证明它们均为Liouville可积的广义Hamilton方程族;而通过分别具有3个和4个位势的等谱问题,遵循屠格式构造了二族新的Liouville可积的广义Hamilton方程族;给出了利用Lenard梯度递推序列产生发展方程族及其零曲率表示的一种方法,作为应用,讨论了CKdV族,BPT族及耦合Burgers族的产生及其零曲率表示;应用非线性化技巧,证明了在Bargmann约束下,耦合Burgers族的Lax组可被线性化为Liou-ville完全可积的Hamilton系统。

更多网络解释与发展方程相关的网络解释 [注:此内容来源于网络,仅供参考]

evolution equation:发展方程

这样,复杂的曲线运动就可以简单地表示成一个更高一维的函数的演化,这可以用一个发展方程(evolution equation)来描述,数学里已经有很多工具可以用了. 在很多高等数学的课本里都有变分法的基本内容,这就够用了. 关键是学会怎么计算泛函的导数.

nonlinear evolution equation:非线性发展方程

非线性发展方程:nonlinear developing equation | 非线性发展方程:Nonlinear evolution equation. | 非线性方程组:nonlinear equation

abstract evolution equation:抽象发展方程

抽象类比迁移:abstract analogy transfer | 抽象发展方程:abstract evolution equation | 实时抽象层:Real-Time abstract layer

equation of evolution:演化方程式;发展方程式

平衡方程 equation of equilibrium | 演化方程式;发展方程式 equation of evolution | 高次方程 equation of higher degree

equation of evolution:发展方程

equation of equilibrium 平衡方程 | equation of evolution 发展方程 | equation of exchange 费雪氏交换方程式,交易方程式

nonlinear equation:非线性方程组

非线性发展方程:Nonlinear evolution equation. | 非线性方程组:nonlinear equation | 非线性椭圆方程:Nonlinear Elliptic Equation

Nonlinear operator equation:非线性算子方程

非线性椭圆方程:Nonlinear Elliptic Equation | 非线性算子方程:Nonlinear operator equation | 非线性发展方程:nonlinear evolution equation

Nonlinear operator equations:非线性算子方程

非线性抛物方程:nonlinear parabolic equations | 非线性算子方程:Nonlinear operator equations | 非线性发展方程:Nonlinear evolution equations

Schrodinger equation:薛定谔方程

他发展了化学中的企图方式,这些方式是基于对薛定谔方程(Schrodinger equation)中的波函数作不同的描写. 他创立了一个理论模型化学,其中用一系列越来越准确的近似值,系统地促进量子化学方程的准确解析,从而可以掌握企图的精度,

Sutcliffe development theory:沙氏发展理论

"Sutcliffe development equation","沙氏发展方程" | "Sutcliffe development theory","沙氏发展理论" | "swallow storm","燕[风]暴"