- 更多网络例句与反解析函数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In Chapter 1, two solutions to the elliptical boundary value problem have been constructed through a monotone iterative process, and they might be identical. In Chapter 2, the author expresses the local solution to the parabolic initial boundary value problem taking advantage of Green function. In Chapter 3, the asymptotic solution to the initial value problem of Duffing equation is obtained and the method for finding the approximate solution to the inverse problem is put forward.This paper is planned with a view to the author's research means.
从研究结果看:第一章通过单调迭代过程构造出椭圆型方程的边值问题的两个解,并且指出二者可能是同一个解;第二章利用格林函数给出了抛物型方程的初边值问题的局部解的解析表达式;第三章中,先对Duffing方程的初值问题写出解的渐近展开式,再对其反问题提出一种求近似解的方法。
-
In this research a new mathematical model - cubic polynom with two given derivatives at end points - was proposed which can good match the S-shpae curve.This model has a number of analytical features:describing the geographic phinomena prosesses in three hierarchies (textural fractal,structural fractal and state fractal); the boundary values of the structural fractal can be considered as the boundary values of interval of scaleless.
在研究中提出了扩展分维表达函数:带导数三次多项式,它能很好地表达反S形分布曲线,具有一系列解析特征:可从三个层次(纹理分形、结构分形和态势分形)上描述地理现象或过程;其中结构分形的边界可近似地看作是非扩展分维无标度区的上下界。
-
An analytical model describing the dispersion with an exponential dispersion function is built, which be transformed into CDE problem with variable coefficient, using hypergeometric function and inversion technique, an analytical solution for two type boundary conditions is obtained.
文章对于具有指数弥散函数的弥散过程建立了对流-弥散微分方程模型,应用积分变换将问题转化为具有变系数的常微分方程问题;对于两种类型的边界条件,应用超几何函数和反演技术得到了问题的解析解,并分析了指数弥散过程和常数弥散过程的不同性质。
-
A combinatorial identity is obtained:=:~z 2r扟32-rn-iJ As main result of this paper, in section two, the convolution梩ype identities emerge from our discussion about Lagrange formula whom in author 憇 view can be taken as the inherent characteristic of Lagrange formula but have been ignored fOi so long time.
第一章对拉格朗日反演在Riordan群理论中的应用进行了介绍,证明了一个组合等式:第二章通过对拉格朗日反演定理本身的分析,得到一个对任意的形式幂级数都适用的三个拟卷积公式,这些公式体现了任意能在零点解析的函数的内在性质。
-
In part one,because there is no long-range order in one-dimensional(1D)system,generalized second-order Green's function theory isused to 1D spin-1 antiferromagnetic spin chain.The Haldane gapin the excitation spectrum appears naturally in the analytical re-sult;When k is zero,there is a gap 2Δ.
第一部分中,在长程序为零的条件下,我们应用推广的二级格林函数理论,讨论了自旋为1的反铁磁一维链,Haldane能隙在解析结果中自然地得出,在k=0时,能谱中存在一个2Δ能隙,Δ=0.5J。
-
Three elements should be calculated in first-order circuit, which can synthesise analytical solution. Second-order series RLC and parallel RLC both can be calculated by the general function, which uses the Matlab to calculate differential equations. Generally, second-order and high-order circuits use Laplace transformation to formulate circuit equation, and get analytical solution by using Laplace inverse transform.
一阶电路先计算3要素,后合成解析结果;RLC串联和并联的二阶电路采用自编的通用函数计算,自编函数采用了Matlab求解微分方程的符号运算方法;一般的二阶电路和高阶电路采用拉氏变换列写电路方程,再用拉氏反变换得到解析结果。
-
Firstly, we test that the error data are not normal distribution, and even the expectation is not zero. Then we analyze the possible type distribution of these error data. Finally, we use the stepwise method to fit the error data and obtain a function for some parameters of the SAIL model. As prior knowledge, the fitting function will be used to inverse these parameters ofthe SAIL model soon.
首先检验了误差数据不服从正态分布,甚至均值不为零;然后对误差数据可能服从的分布类型给予了解析,得到了指数分布和混合正态分布两种不同类型的可能分布;最后拟合了误差关于SAIL模型部分参数的函数表达式,以作为先验知识应用于反演之中。
- 更多网络解释与反解析函数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
anti semiinvariant:反半不变量
anti reflexiveness 反自反性 | anti semiinvariant 反半不变量 | antianalytic function 反解析函数
-
antianalytic function:反解析函数
anti semiinvariant 反半不变量 | antianalytic function 反解析函数 | antichain 反链
-
antichain:反链
antianalytic function 反解析函数 | antichain 反链 | anticlockwise 逆时针的