- 更多网络例句与反线性映射相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In chapterⅡ, Firstly, we research the derivable mappings at unit and the anti-derivable mappings at zero point on Von Neumann algebra M.
证明了在单位可导和在单位反可导的范数连续的线性映射是M上的内导子,在零点反可导的范数连续的线性映射是M上的广义内导子。
-
It is proved that every Lie derivation of nest algebra is the sum of an associative derivation and a general trace. Every Lie isomorphism between nest subalgebras of a factor von Neumann algebra is the sum of an isomorphism and a general trace or the sum of a negative anti-isomorphism and a general trace. Lie invariant subspace of linear mappings on Banach algebras is introduced, and linear maps from nest subalgebra of a factor von Neumann algebra into itself which satisfy the property that the space of derivations is their Lie invariant subspaces are characterized. Simultaneously, it is shown that such maps are Lie derivations modulo the set of scalar multiple of the identity.
得到Lie导子的特征表示,即套代数上的任何一个Lie导子都是内导子与广义迹之和;给出了Lie同构和同构及反同构之间的关系,即因子von Neumann代数中套子代数之间的任何一个Lie同构要么是同构与广义迹之和要么是负反同构与广义迹之和;引入了Banach代数上线性映射的Lie不变子空间,并给出von Neumann代数中套子代数上以导子空间为Lie不变子空间的线性映射的一个刻画,同时也表明在模去数乘恒等映射的意义下,以导子空间为Lie不变子空间的线性映射就是Lie导子。
-
The study of heterogeneous mapping algorithm based on the human eyes space-variant system. According to the "one-one mapping ring" and mapping direction we classify the mapping transformation into two sorts: forward algorithm and reverse algorithm. Based on the general rules of constructing this mapping model linear model and arctangent model are studied and verified.
本文基于人眼的空间分辨率可变视觉理念,研究了非均匀采样变换实现算法和非均匀采样变换的尺度轴转换与角度轴转换具有的"一一映射环"以及非均匀采样实现的两类转换:正向转换与逆向转换;在非均匀采样转换模型的基本构造规则基础上,讨论了区别于对数极坐标转换的线性非均匀采样模型及反正切非均匀采样模型的建立。
-
Often, the characterizations of such linear preservers imply that they are algebric isomorphisms or algebric anti-isomorphisms, and therefore reveal the connection between the inherent properties of operator algebras and linear maps on itself. This makes one know and understand operator algebras more deeply.
其研究结果表明,在许多情形下,这样的线性映射是代数同态或代数反同态,从而揭示了算子代数的固有性质以及与其上线性映射的联系,使人们进一步加深对算子代数的认识和理解。
- 更多网络解释与反线性映射相关的网络解释 [注:此内容来源于网络,仅供参考]
-
antilinear mapping:反线性映射
antilinear 反线性的 | antilinear mapping 反线性映射 | antilinear transformation 反线性变换
-
antilinear transformation:反线性变换
antilinear mapping 反线性映射 | antilinear transformation 反线性变换 | antilogarithm 反对数