- 更多网络例句与反对称矩阵相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In chapter 3, the paper proposed a new kind of preference relation, i.e. distance preference relation; followed this, a scale was introduced for constructing antisymmetric matrix, and consistency of the matrix was defined, three methods for computing priority vector were studied; At the end, two examples were used to demonstrate the application of the new method,and they showed that the introduction of antisymmetric matrix to AHP is effective and valuable.
本文首先对Saaty AHP的几种常见标度进行了比较分析,然后对正互反判断矩阵及模糊互补判断矩阵的权重计算方法进行了归纳和总结;最后,本文提出了一种新的偏好关系,即基于"差"的偏好关系,从而将反对称矩阵引入层次分析法,接着对新型偏好关系下判断矩阵的构造、一致性的定义与性质以及权重的计算方法做了初步的研究,最后用算例说明了新方法的应用,并做了相应的比较分析,结果表明采用基于"差"的偏好关系构造反对称矩阵拓展了AHP的应用范围,有一定的理论和应用价值。
-
By using the secondary unit matrix, the inverse problem of secondary eigenvalue of anti-skew-symmetric is solved.
本文在对问题的理论推导中,充分利用了次单位矩阵的作用,提供了将次反对称矩阵的逆次特征值问题转为反对称矩阵的逆特征值问题来解决的新思路。
-
Exive least-squares solutions, antire?exive least-squares solutions, bisymmetric least-squaressolutions, symmetric and antipersymmetric least-squares solutions, symmetric or-thogonal symmetric least-squares solutions, symmetric orthogonal antisymmetricleast-squares solutions and their optimal approximation to the linear matrix equa-tion AX = B, and solve them successfully. 2. For Problem II, we can convert it to another problem of finding the least-squares solutions with the least norm of a new consistent matrix equation. Onthe base of the solutions of Problem I we can apply the iterative method to get
本文所构造的迭代法的优点在于先利用法方程变换将求矩阵方程的最小二乘解转化为求一个相容矩阵方程的解的问题,再利用迭代法对于任意给定的初始矩阵进行迭代,均可在有限步内迭代出所求问题的一个解;可将问题II转化为求新方程的极小范数解的问题,同样用迭代法求解,从而系统且全面地解决了问题I、II在约束矩阵类如中心对称、中心反对称、自反矩阵、反自反矩阵、双对称、对称次反对称、对称正交对称、对称正交反对称矩阵中的最小二乘解及其最佳逼近问题。
-
Applying mechanics of partitioning of matrix and special structure, we have given the sufficient and necessary conditions for the matrix if it has bisymmetric and anti-bisymmetric solutions.
对于广义双对称与广义双反对称矩阵,首先结合矩阵的结构特点,应用广义逆的相关知识,给出了有解的充要条件以及有解时解的表达式,最后在一种特定的分解条件下,考虑了它的广义双反对称最小二乘解。
-
A numerical algorithm and a numerical experiment are given. 2. The least norm, positive semidefinite and positive definite real solutions of bisymmetric matrix equations (A~TXA, XA — YAD)=(D, 0)are considered by applying the generalized singular value decomposition.
利用广义奇异值分解讨论了矩阵方程(A~T XA,XA-YAE)=(E,0)在对称次反对称矩阵集合中的解、极小范数解和在双对称矩阵集合中的解、极小范数解及正定解; 3。
-
This thesis focuses on studying the matrix equa-tion problem systematically, and proposed an abstract algorithm of solving the matrixequation with constraints, and established a strict convergence theory. Using this algo-rithm, we can solve the sets of matrix equation satisfying some constraint conditions,such as symmetric, antisymmetric, centrosymmetric, centroskew symmetric, re?exive,antire?exive, bisymmetric, symmetric and antipersymmetric, symmetric orthogonalsymmetric, symmetric orthogonal antisymmetric, Hermite generalized Hamilton ma-trix;So we can solve the problem with this algorithm, if the set of constrain matrixcan make a subspace in matrix space, and this algorithm also can solve the optimalapproximation and least squares problem. So this abstract algorithm has universal andimportant practical value.
本篇硕士论文系统地研究了此类问题,并找到了求解约束矩阵问题的抽象算法,并建立严格的收敛性理论,利用这一算法可求解约束条件为对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵,对称正交对称矩阵、对称正交反对称矩阵、双中心矩阵、Hermite广义Hamilton矩阵等;可以说只要约束矩阵集合在矩阵空间中构成子空间,都可以考虑用此算法求解,而且这一算法还能把矩阵方程解及其最佳逼近,最小二乘解及其最佳逼近统一处理,因此本文算法有普适性和重要的实用价值。
-
Thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-symmetric orth-anti-symmetric matrices;(4) S1,S2 are sets of bi-anti-symmetric matrices;(5) S1 is the set of symmetric orth-symmetric matrices, S2 is the set of anti-symmetric orth-anti-symmetric matrices;(6) S1 is the set of bisymmetric matrices, S2 is the set of bi-anti-symmetric matrices;(7) S1 is the set of anti-symmetric orth-anti-symmetric matrices, S2 is the set of symmetric orth-symmetric matrices;(8) S1 is the set of bi-anti-symmetric matrices, S2 is the set of bisymmetricmatrices;On the base of studying the basic properties of the matrices, the expression of solutions and some numerical examples are presented.
本文第二章将主要就上述问题讨论如下几种情况: 1.S_1,S_2为对称正交对称矩阵; 2.S_1,S_2为双对称矩阵; 3.S_1,S_2为反对称正交反对称矩阵; 4.S_1,S_2为双反对称矩阵; 5.S_1为对称正交对称矩阵,S_2为反对称正交反对称矩阵; 6.S_1为双对称矩阵,S_2为双反对称矩阵; 7.S_1为反对称正交反对称矩阵,S_2为对称正交对称矩阵; 8.S_1为双反对称矩阵,S_2为双对称矩阵。
-
Problem III Given find such thatProblem IV When Problem I or II or III is consistent, let Se denote the set of its solutions, for given , find , such thatwhere is Frobenius norm, S is Rn×p or a subset of Rn×p satisfying some constraint conditions, such as symmetric, skew-symmetric, centrosymmet-ric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
问题Ⅳ 设问题Ⅰ或Ⅱ或Ⅲ相容,且其解集合为SE,给定X0∈Rn×p,求X∈SE,使其中‖·‖为Frobenius范数,S为Rn×p或为Rn×p中满足某约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等。
-
R~, find∈S_E, such that ProblemⅤGiven, find [X_1,X_2,…,X_l](where X_i∈S_i,i=1,2,…,l), such that A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C ProblemⅥWhen ProblemⅤis consistent, let SE denote the set of its solutions, for given,find, such that where||·|| is Frobenius norm, S and S_i are the matrix set satisfying some constraint conditions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
R~,求∈S_E,使得问题Ⅴ给定,求[X_1,X_2,…,X_l](其中X_i∈S_i,i=1,2,…,l),使得 A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C 问题Ⅵ设问题Ⅴ相容,且其解集合为S_E,给定矩阵组,求,使得其中||·||为Frobenius范数,S,S_i为满足某种约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等等。
-
Denotes the Frobenius norm, S is a subset of Rn×n. This master thesishas mainly studied centrosymmetric matrix set, centroskew symmetric matrix set,re?
为Frobenius范数, S为Rn×n中满足某约束条件的矩阵集合,本硕士论文主要研究了中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵、对称正交对称矩阵、对称正交反对称矩阵。
- 更多网络解释与反对称矩阵相关的网络解释 [注:此内容来源于网络,仅供参考]
-
antisymmetric function:反对称函数
antisymmetric 反对称的 | antisymmetric function 反对称函数 | antisymmetric matrix 反对称矩阵
-
antisymmetric matrix:反对称矩阵
antisymmetric function 反对称函数 | antisymmetric matrix 反对称矩阵 | antisymmetric relation 反对称关系
-
antisymmetric vibration:反对称振动
"antisymmetric matrix","反对称矩阵" | "antisymmetric vibration","反对称振动" | "antisymmetric wave function","反对称波函数"
-
Butterworth:巴特沃斯
其次对两种基本硬开关变换器Boost和Cuk变换器的互联和阻尼配置的无源性控制(IDA-PBC)方法进行了研究,同时解决了包括反对称矩阵,阻尼矩阵的配置,期望能量函数的选择,平衡点的求取,稳定性...4.4.2 巴特沃斯(Butterworth)滤波器的设计及仿真
-
skew symmetric determinant:斜对称行列式
skew symmetric 反对称的 | skew symmetric determinant 斜对称行列式 | skew symmetric matrix 斜对称矩阵
-
skew symmetric matrix:反对称矩阵
绕积马氏链:skew product Markov chain | 反对称矩阵:Skew-symmetric matrix | 斜线性插值:skew linear interpolation
-
skew symmetric matrix:反对称矩阵=>交代行列
skew-symmetric 反对称的,反号对称 | skew-symmetric matrix 反对称矩阵=>交代行列 | skew-symmetric operator 反对称算子
-
skew symmetric:反对称的,反号对称
skew-coilwinding 斜圈绕组 | skew-symmetric 反对称的 反号对称 | skew-symmetricmatrix 反对称矩阵
-
antisymmetrical:不对称的
antisubmarinebarrier 反潜屏障 | antisymmetrical 不对称的 | antisymmetricmatrix 反对称矩阵
-
antisymmetrical load:反对称载荷
antisymmetrical combination | 反对称组合 | antisymmetrical load | 反对称载荷 | antisymmetrical matrix | 反对称矩阵