- 相关搜索
- 反号对称
- 更多网络例句与反对称相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The conclusion of this article contains:(1) The climatology symmetric index and antisymmetric index which represent the uniform system of ocean and atmosphere is defined according to the unique kinetic character of the large-scale fluid. The symmetric mode, a state mode, and antisymmetric mode, a propagate westward mode, of ocean and atmosphere are distinguished clearly from each other. Also, the primary part which determines the symmetric mode emerges from non-divergenct wind and the dominant part which contributes to the antisymmetric mode mostly is irrotational wind. The article also compares the disparity of the climatology distribution of SST and sea surface wind field between 1948-1975 and 1976-2005. The SST of both the tropical Indian Ocean and the tropical Pacific after 80's is warm than before 80's .
主要结论如下:(1)热带太平洋气候平均态所包含的海-气相互作用的资料分析根据海洋和大气的运动特性,定义了表征海洋大气系统的对称模态和反对称模态指数,通过两个指数对热带太平洋和印度洋关于赤道对称和反对称的两个模态进行区分,发现关于赤道反对称的海-气耦合模态主要包含了大气散度分量和海洋SST的相互作用;关于赤道对称的海-气耦合模态主要包含了大气旋度分量和海洋SST的相互作用,并从资料估算了该耦合模态向西传播的速度。
-
Exive least-squares solutions, antire?exive least-squares solutions, bisymmetric least-squaressolutions, symmetric and antipersymmetric least-squares solutions, symmetric or-thogonal symmetric least-squares solutions, symmetric orthogonal antisymmetricleast-squares solutions and their optimal approximation to the linear matrix equa-tion AX = B, and solve them successfully. 2. For Problem II, we can convert it to another problem of finding the least-squares solutions with the least norm of a new consistent matrix equation. Onthe base of the solutions of Problem I we can apply the iterative method to get
本文所构造的迭代法的优点在于先利用法方程变换将求矩阵方程的最小二乘解转化为求一个相容矩阵方程的解的问题,再利用迭代法对于任意给定的初始矩阵进行迭代,均可在有限步内迭代出所求问题的一个解;可将问题II转化为求新方程的极小范数解的问题,同样用迭代法求解,从而系统且全面地解决了问题I、II在约束矩阵类如中心对称、中心反对称、自反矩阵、反自反矩阵、双对称、对称次反对称、对称正交对称、对称正交反对称矩阵中的最小二乘解及其最佳逼近问题。
-
An algorithm for constructing a class of symmetric-antisymmetric orthogonal refinable functions with multiplicity 2r is presented.
给出一类重数为2r的正交对称-反对称多小波的构造算法,即对任给长度为2N的对称-反对称正交多小波,通过本文所给的构造算法可以得到长度为2N+1的对称和反对称多小波。
-
This thesis focuses on studying the matrix equa-tion problem systematically, and proposed an abstract algorithm of solving the matrixequation with constraints, and established a strict convergence theory. Using this algo-rithm, we can solve the sets of matrix equation satisfying some constraint conditions,such as symmetric, antisymmetric, centrosymmetric, centroskew symmetric, re?exive,antire?exive, bisymmetric, symmetric and antipersymmetric, symmetric orthogonalsymmetric, symmetric orthogonal antisymmetric, Hermite generalized Hamilton ma-trix;So we can solve the problem with this algorithm, if the set of constrain matrixcan make a subspace in matrix space, and this algorithm also can solve the optimalapproximation and least squares problem. So this abstract algorithm has universal andimportant practical value.
本篇硕士论文系统地研究了此类问题,并找到了求解约束矩阵问题的抽象算法,并建立严格的收敛性理论,利用这一算法可求解约束条件为对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵,对称正交对称矩阵、对称正交反对称矩阵、双中心矩阵、Hermite广义Hamilton矩阵等;可以说只要约束矩阵集合在矩阵空间中构成子空间,都可以考虑用此算法求解,而且这一算法还能把矩阵方程解及其最佳逼近,最小二乘解及其最佳逼近统一处理,因此本文算法有普适性和重要的实用价值。
-
The solutions of ProblemⅠ,ⅡandⅢare discussed by using the generalized conjugate gradient method. When the equation is consistent, the solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are successfully found; When the equation is inconsistent, the least-squares solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are also found successfully. The generalized conjugate gradient method has the following traits:(1) It can judge automatically the information of solutions.
利用广义共轭梯度法,讨论了问题Ⅰ、Ⅱ和Ⅲ解的情况:当方程相容时,研究了方程的一般解、对称解、中心对称解、自反矩阵解、双对称解、对称次反对称解及其最佳逼近等问题;当方程不相容时,研究了方程的最小二乘一般解、最小二乘对称解、最小二乘中心对称解、最小二乘自反矩阵解、最小二乘双对称解、最小二乘对称次反对称解及其最佳逼近等问题。
-
Thesis and mainly discuss the following problems:What we mainly discussed in the second chapter as follows:(1) S1,S2 are sets of symmetric orth-symmetric matrices;(2) S1,S2 are sets of bisymmetric matrices;(3) S1,S2 are sets of anti-symmetric orth-anti-symmetric matrices;(4) S1,S2 are sets of bi-anti-symmetric matrices;(5) S1 is the set of symmetric orth-symmetric matrices, S2 is the set of anti-symmetric orth-anti-symmetric matrices;(6) S1 is the set of bisymmetric matrices, S2 is the set of bi-anti-symmetric matrices;(7) S1 is the set of anti-symmetric orth-anti-symmetric matrices, S2 is the set of symmetric orth-symmetric matrices;(8) S1 is the set of bi-anti-symmetric matrices, S2 is the set of bisymmetricmatrices;On the base of studying the basic properties of the matrices, the expression of solutions and some numerical examples are presented.
本文第二章将主要就上述问题讨论如下几种情况: 1.S_1,S_2为对称正交对称矩阵; 2.S_1,S_2为双对称矩阵; 3.S_1,S_2为反对称正交反对称矩阵; 4.S_1,S_2为双反对称矩阵; 5.S_1为对称正交对称矩阵,S_2为反对称正交反对称矩阵; 6.S_1为双对称矩阵,S_2为双反对称矩阵; 7.S_1为反对称正交反对称矩阵,S_2为对称正交对称矩阵; 8.S_1为双反对称矩阵,S_2为双对称矩阵。
-
Problem III Given find such thatProblem IV When Problem I or II or III is consistent, let Se denote the set of its solutions, for given , find , such thatwhere is Frobenius norm, S is Rn×p or a subset of Rn×p satisfying some constraint conditions, such as symmetric, skew-symmetric, centrosymmet-ric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
问题Ⅳ 设问题Ⅰ或Ⅱ或Ⅲ相容,且其解集合为SE,给定X0∈Rn×p,求X∈SE,使其中‖·‖为Frobenius范数,S为Rn×p或为Rn×p中满足某约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等。
-
R~, find∈S_E, such that ProblemⅤGiven, find [X_1,X_2,…,X_l](where X_i∈S_i,i=1,2,…,l), such that A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C ProblemⅥWhen ProblemⅤis consistent, let SE denote the set of its solutions, for given,find, such that where||·|| is Frobenius norm, S and S_i are the matrix set satisfying some constraint conditions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
R~,求∈S_E,使得问题Ⅴ给定,求[X_1,X_2,…,X_l](其中X_i∈S_i,i=1,2,…,l),使得 A_1X_1B_1+A_2X_2B_2+…+A_lX_lB_l=C 问题Ⅵ设问题Ⅴ相容,且其解集合为S_E,给定矩阵组,求,使得其中||·||为Frobenius范数,S,S_i为满足某种约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等等。
-
Denotes the Frobenius norm, S is a subset of Rn×n. This master thesishas mainly studied centrosymmetric matrix set, centroskew symmetric matrix set,re?
为Frobenius范数, S为Rn×n中满足某约束条件的矩阵集合,本硕士论文主要研究了中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵、对称正交对称矩阵、对称正交反对称矩阵。
-
For problem II, many references have studied it and obtained its common solutions, symmetric solutions, skew-symmetric solutions and its optimal approximation constrained solution, but the representation of its solutions are complicated.
本文首次采用迭代法系统的研究了它求一般解、对称解、反求解约束矩阵方程及其最佳逼近的迭代法的研究对称解、中心对称解、中心反对称解、自反矩阵解、反自反矩阵解、双对称解、对称次反对称解及其最佳逼近问题,并首次成功地解决了它求中心对称解、中心反对称解、自反矩阵解、反自反矩阵解、双对称解与对称次反对称解及其最佳逼近的问题,拓广和改进了已有的研究成果。
- 更多网络解释与反对称相关的网络解释 [注:此内容来源于网络,仅供参考]
-
antisymmetric function:反对称函数
antisymmetric 反对称的 | antisymmetric function 反对称函数 | antisymmetric matrix 反对称矩阵
-
antisymmetric matrix:反对称矩阵
antisymmetric function 反对称函数 | antisymmetric matrix 反对称矩阵 | antisymmetric relation 反对称关系
-
antisymmetric tensor:斜对称张量;反对称张量
antisymmetric 斜对称的 | antisymmetric tensor 斜对称张量;反对称张量 | antisymmetrical state 反对称态
-
antisymmetric:反对称的
antisymmetric tensor 反对称张量 | antisymmetric 反对称的 | antisymmetry 反对称
-
antisymmetric:反对称的,非对称的
"anti-surge","减纵荡" | "antisymmetric","反对称的,非对称的" | "antisymmetry","反对称(性)"
-
antisymmetric vibration:反对称振动
"antisymmetric matrix","反对称矩阵" | "antisymmetric vibration","反对称振动" | "antisymmetric wave function","反对称波函数"
-
skew symmetric determinant:反对称行列式
反对称的 skew symmetric | 反对称行列式 skew symmetric determinant | 反对称并矢 skew symmetric dyadic
-
skew symmetric matrix:反对称矩阵=>交代行列
skew-symmetric 反对称的,反号对称 | skew-symmetric matrix 反对称矩阵=>交代行列 | skew-symmetric operator 反对称算子
-
skew symmetric:反对称的,反号对称
skew-coilwinding 斜圈绕组 | skew-symmetric 反对称的 反号对称 | skew-symmetricmatrix 反对称矩阵
-
antisymmetrical:反对称的
antisymmetric /反对称的/ | antisymmetrical /反对称的/ | antisymmetry /反对称/反对称性/