- 更多网络例句与双曲正切相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Finally a generalized fuzzy hyperbolic model is proposed, which is proven to be a universal approximator, and two identification algorithms are derived.
最后提出一种广义模糊双曲正切模型,并证明了此模型具有全局逼近性。
-
A new generalized fuzzy hyperbolic model is proposed, which can be seen as the generalization of common fuzzy hyperbolic model. The generalized fuzzy hyperbolic model is proven to be a universal approximator. Two identification algorithms are put forward to identify the model from input/out data.
通过对模糊双曲正切模型的改进,提出一种广义模糊双曲正切模型,证明了此模型可以以任意精度逼近紧集上的连续非线性函数,即此模型具有全局逼近性,并给出其辨识算法。
-
Another reason why hyperbolic tangent is a good choice is that it's easy to obtain its derivative.
另一个原因双曲正切是一个很好的选择是很容易得到它的导数。
-
One good selection for the activation function is the hyperbolic tangent, or .
一个用于激活性能好选择是双曲正切或。
-
Aiming at this,this article proposed the "process control" method and established the process curve based on hyperbolic tangent function .
针对这种情况,提出了土钉支护结构水平位移安全监测"过程控制"的概念,建立了双曲正切函数的过程曲线,旨在对土钉支护结构施工全过程做到安全有效的监测和控制,并将所建立模型与理正岩土计算软件的结果进行比较,较好地符合计算结果。
-
For fuzzy hyperbolic model, three stable controllers are proposed based on robust stability theory, optimal control theory, H-infinite theory and nonlinear system theory. Finally a fuzzy Lyapunov analysis method is put forward to analyze the stability of fuzzy hyperbolic system.
针对模糊双曲正切模型,根据鲁棒稳定性理论、最优控制理论、H无穷控制理论和非线性系统理论设计了三种稳定的控制器,并提出一种模糊Lyapunov分析方法使用语言信息分析模糊双曲正切系统的稳定性。
-
In this paper, hyperbolic tangent function method and its some extensions suchas sine-cosine method, extended tanh method, F-expansion method and Jacobi ellip-tic function method are summarized, the idea and technique of hyperbolic functionmethod are explored.
本文对双曲正切函数法及sine - cosine方法,扩展tanh函数法,Jacobi椭圆函数展开法, F-展开法等一些主要的双曲函数方法及其扩展进行了系统的归纳与总结,揭示了双曲函数法的构造思想与技巧。
-
This invented simplified algorithm is to use sectional linear judgement method or looking-up table method to replace the hyperbolic tangent judgement. The substance is to use sectional linear judgement function L or judgement function T of looking-up table to approach the hyperbolic tangent function tanb.
为了解决这个问题,本发明的双层加权并行干扰对消算法的简化算法用分段线性判决方法或者查表法来代替双曲正切判决,其实质就是用分段线性判决函数L或者查表法的判决函数T逼近双曲正切函数tanh。
-
Plentiful and substantial achievements have been made, which motivate a lot of methods to obtain the exact solutions of solitary wave equations, such as: the homogeneous balance method, the hyperbolic function method, the power series method, besides the traditional methods, such as: the inverse scatting method, the bilinear Hirota method, and the Backlund transformation method etc.
求解孤立波方程精确解的方法除了传统的反散射方法、Hirota双线性方法、Backlünd变换方法外,近年来又涌现了很多新方法,如齐次平衡法、双曲正切法,级数展开法等。
-
Chapter 2 is devoted to study of exact solutions of the nonlinear evolution equations. Using solutions of a Bernoulli equation instead of tanh in tanh-function method we find some more general solutions of the KdV-Burgers-Kuramoto equation , and by using the nonlinear telegraph equation we show that there are many different choices on its balancing number m and the power n of the nonlinear term in Bernoulli equation by which we can recover the previously known solutions and also can derive new square root type solitary wave solutions. Exact solitary wave solutions for a surface wave equation are obtained by means of the homogeneous balance method. We also present an approach for constructing the solitary wave solutions and non-solitary wave solutions of the nonlinear evolution equations by using the homogeneous balance method directly, which is also used to find the steady state solutions, solitary wave solutions and the non-solitary wave solutions of the 2+1 dimensional dispersive long wave equations. The soliton-like solutions of the BLMP equation and the 2+1 dimensional breaking soliton equation are found by use of the symbolic-computation-based Method.
第二章中研究了非线性发展方程的精确解:用双曲正切函数法中的双曲正切函数换为Bernoulli方程的解的方法而给出KdV-Burgers-Kuramoto方程的精确解并用非线性电波方程为例说明了平衡数m和Bernoulli方程中非线性项的次数n有着多种选择的可能,它不但使我们能找到已知解而且也能找出新的根式孤立波解;用齐次平衡法给出一个曲面波方程的精确孤立波解,并提出直接用齐次平衡法寻找非线性发展方程的孤立波解、非孤立波解的方法,作为应用给出2+1维色散长波方程组等的定态解、孤立波解、非孤立波解等;用Symbolic-computation-basedMethod获得BLMP方程和2+1维破裂孤子方程的类孤子解;提出sine-Gordon型方程的直接求解方法,并获得sine-Gordon方程、双sine-Gordon方程、sinh-Gordon方程、MKdV-sine-Gordon方程和Born-Infeld方程等的精确孤立波解。
- 更多网络解释与双曲正切相关的网络解释 [注:此内容来源于网络,仅供参考]
-
hyperbolic tangent function:双曲正切
hyperbolic tangent 双曲正切 | hyperbolic tangent function 双曲正切 | hyperbolic type 双曲型
-
hyperbolic tangent:双曲正切
hyperbolic system 双曲型组 | hyperbolic tangent 双曲正切 | hyperbolic tangent function 双曲正切
-
hyperbolic tangent:双曲正切函数
hyperbolic sine, 双曲正弦函数 | hyperbolic tangent, 双曲正切函数 | divide trace by Max. Value, 地震道数据用最大值除
-
inverse hyperbolic tangent:反双曲正切
反双曲余弦 inverse hyperbolic cosine | 反双曲正切 inverse hyperbolic tangent | 极限 limit
-
Areatangens (hyperbolicus) inverse hyperbolic tangent:反双曲正切
Areasinus (hyperbolicus) inverse hyperbolic sine 反双曲正弦 | Areatangens (hyperbolicus) inverse hyperbolic tangent 反双曲正切 | Argand-Diagramm argand plane; argand diagram 复数平面
-
tanh:双曲正切
tan 正切 | tanh 双曲正切 | taylortool 进行Taylor逼近分析的交互界面
-
tanh:返回数的双曲正切值
TAN 返回数的正切 | TANH 返回数的双曲正切值 | TRUNC 将数截尾为整数
-
tan,tanh:正切,双曲正切
sqrt 平方根 | tan,tanh 正切,双曲正切 | blkding 从输入参量建立块对角矩阵
-
tanh math.hcomplex:数学子程序 计算参数x的双曲正切值
tan math.hcomplex 数学子程序 计算正切值 | tanh math.hcomplex 数学子程序 计算参数x的双曲正切值 | tanhl math.hcomplex 数学子程序 计算正切值
-
tanh math.h complex:数学子程序 计算参数x的双曲正切值
tan math.h complex 数学子程序 计算正切值 | tanh math.h complex 数学子程序 计算参数x的双曲正切值 | tanhl math.h complex 数学子程序 计算正切值