- 更多网络例句与双对称的相关的网络例句 [注:此内容来源于网络,仅供参考]
-
It consists of the next three aspects: firstly, we study Murthys' open problem whether the augmented matrix is a Q0-matrix for an arbitary square matrix A , provide an affirmable answer to this problem , obtain the augmented matrix of a sufficient matrix is a sufficient matrix and prove the Graves algorithm can be used to solve linear complementarity problem with bisymmetry Po-matrices; Secondly, we study Murthys' conjecture about positive semidefinite matrices and provide some sufficient conditions such that a matrix is a positive semidefinite matrix, we also study Pang's conjecture , obtain two conditions when R0-matrices and Q-matrices are equivelent and some properties about E0 ∩ Q-matrices; Lastly, we give a counterexample to prove Danao's conjecture that if A is a Po-matrix, A ∈ E' A ∈ P1* is false, point out some mistakes of Murthys in [20] , obtain when n = 2 or 3, A ∈ E' A ∈ P1*, i.e.
本文分为三个部分,主要研究了线性互补问题的几个相关的公开问题以及猜想:(1)研究了Murthy等在[2]中提出的公开问题,即对任意的矩阵A,其扩充矩阵是否为Q_0-矩阵,给出了肯定的回答,得到充分矩阵的扩充矩阵是充分矩阵,并讨论了Graves算法,证明了若A是双对称的P_0-矩阵时,LCP可由Graves算法给出;(2)研究了Murthy等在[6]中提出关于半正定矩阵的猜想,给出了半正定矩阵的一些充分条件,并研究了Pang~-猜想,得到了只R_0-矩阵与Q-矩阵的二个等价条件,以及E_0∩Q-矩阵的一些性质;(3)研究了Danao在[25]中提出的Danao猜想,即,若A为P_0-矩阵,则,我们给出了反例证明了此猜想当n≥4时不成立,指出了Murthy等在[20]中的一些错误,得到n=2,3时,即[25]中定理3.2中A∈P_0的条件可以去掉。
-
The general form of solution for the non symmetric matrix A is given, the expression of optimal approximation solution is presented, and an algorithm for solving the problem is described. The total least squares problem with symmetric and bisymmetry constraints is discussed respectively. A sufficient condition for existence of solution is derived by use of the theory of matrix Ricaati equation. The general form of solution is given if the problem has a solution, and the expression of optimal approximation solution is presented. Some numerical examples are given.
对矩阵A是非对称情形,给出了解的一般表达式,证明了最佳逼近问题解的存在唯一性,并给出了其解的表达式,描述了求解问题的算法;讨论了带对称和双对称约束的总体最小二乘问题,利用Ricaati矩阵方程的理论得到了解存在的一个充分条件,分别对对称矩阵和双对称矩阵两种情形,给出了解的一般表达式,证明了最佳逼近问题解的存在唯一性,给出了其解的表达式,提出了求解这些问题的算法,并给出了数值例子。
-
Thus LES is proved to be suitable to simulate the flow and temperature fields of large scale vortices with complex geometric boundaries. LES cooperated with the second order full extension ETG finite element method is applied to simulate the forced convection heat transfer around two square cylinders arranged side by side. While the boundary conditions are symmetrical, the time history and power spectrums of drag coefficient, lift coefficient, averaged Nusselt number at the wall, and the streamwise velocity and temperature on the symmetrical points are calculated. The results show that the power spectrums are all almost symmetrical.
应用大涡模拟与二阶全展开ETG有限元离散格式相结合的方法对间距比为1.5的条件下横掠并列双方柱强制对流换热问题进行了数值模拟,通过边界条件对称时,对并列双方柱对称点上的速度和温度以及方柱的阻力系数、升力系数和壁面平均Nu数进行的时域分析和频域分析,得到了在对称边界条件下并列双方柱对称点上的速度和温度以及方柱的阻力系数、升力系数和壁面平均Nu数的功率谱均基本对称的结论。
-
Selfconjugate matrix, skewselfconjugate matrix, perselfconjugate matrix, skewperselfconjugate matrix, centrosymmetric matrix, skewcentrosymmetric matrix, bisymmetric matrix, and skewbisymmetric matrix over a ring with an involutorial antiautomorphism are defined. Significant criteria for matrices to be bisymmetric and skewbisymmetric are obtained.
在具有对合反自同构的环上定义了自共轭矩阵,斜自共轭矩阵,广自共轭矩阵,斜广自共轭矩阵,中心对称矩阵,斜中心对称矩阵,双对称矩阵和斜双对称矩阵,建立了双对称矩阵和斜双对称矩阵的重要判定定理。
-
For fixed generalized reflection matrix P, i.e., P^T=P, P^2=I, then matrix X is said to be generalized bisymmetric, if $X=PXP$ and $X=X^T$.
对于某个广义反射阵P,满足P^T=P, P^2=I,那么称矩阵X是广义双对称的,如果满足X=PXP及X=X^T。
-
Furthermore,the optimal approximation bisymmetric solution pair to a given bisymmetric matrix pair in Frobenius norm can be obtained by finding the least norm bisymmetric solution pair of new matrix equation ,where .
另外,给定双对称矩阵对,通过求矩阵方程的双对称解对,得到它的最佳逼近双对称解对。
-
The solutions of ProblemⅠ,ⅡandⅢare discussed by using the generalized conjugate gradient method. When the equation is consistent, the solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are successfully found; When the equation is inconsistent, the least-squares solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are also found successfully. The generalized conjugate gradient method has the following traits:(1) It can judge automatically the information of solutions.
利用广义共轭梯度法,讨论了问题Ⅰ、Ⅱ和Ⅲ解的情况:当方程相容时,研究了方程的一般解、对称解、中心对称解、自反矩阵解、双对称解、对称次反对称解及其最佳逼近等问题;当方程不相容时,研究了方程的最小二乘一般解、最小二乘对称解、最小二乘中心对称解、最小二乘自反矩阵解、最小二乘双对称解、最小二乘对称次反对称解及其最佳逼近等问题。
-
Problem III Given find such thatProblem IV When Problem I or II or III is consistent, let Se denote the set of its solutions, for given , find , such thatwhere is Frobenius norm, S is Rn×p or a subset of Rn×p satisfying some constraint conditions, such as symmetric, skew-symmetric, centrosymmet-ric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric.
问题Ⅳ 设问题Ⅰ或Ⅱ或Ⅲ相容,且其解集合为SE,给定X0∈Rn×p,求X∈SE,使其中‖·‖为Frobenius范数,S为Rn×p或为Rn×p中满足某约束条件的矩阵集合,如对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵等。
-
Denotes the Frobenius norm, S is a subset of Rn×n. This master thesishas mainly studied centrosymmetric matrix set, centroskew symmetric matrix set,re?
为Frobenius范数, S为Rn×n中满足某约束条件的矩阵集合,本硕士论文主要研究了中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵、双对称矩阵、对称次反对称矩阵、对称正交对称矩阵、对称正交反对称矩阵。
-
For problem II, many references have studied it and obtained its common solutions, symmetric solutions, skew-symmetric solutions and its optimal approximation constrained solution, but the representation of its solutions are complicated.
本文首次采用迭代法系统的研究了它求一般解、对称解、反求解约束矩阵方程及其最佳逼近的迭代法的研究对称解、中心对称解、中心反对称解、自反矩阵解、反自反矩阵解、双对称解、对称次反对称解及其最佳逼近问题,并首次成功地解决了它求中心对称解、中心反对称解、自反矩阵解、反自反矩阵解、双对称解与对称次反对称解及其最佳逼近的问题,拓广和改进了已有的研究成果。
- 更多网络解释与双对称的相关的网络解释 [注:此内容来源于网络,仅供参考]
-
bilaterally:双边地; 双方面地 (副)
bilateral 双方的; 左右对称的; 双边的 (形) | bilaterally 双边地; 双方面地 (副) | bilberry 越橘; 覆盆子 (名)
-
bisymmetry:双对称
然而空壳体较完整的病毒颗粒更容易降解,所以核酸的结合有助于增加二十面壳体的稳定性.病毒壳体除螺旋对称和二十面体对称两种主要结构类型外,亦有少数病毒壳体为双对称(bisymmetry)结构.具有双对称结构的典型例子是有尾噬菌体(railedphage),
-
bit address:位地址
bisymmetric | 双对称的 | bit address | 位地址 | bit addressing | 位寻址
-
biradial:两侧辐射对称的,双重对称的
biradial symmetry | 两侧辐射对称 | biradial | 两侧辐射对称的,双重对称的 | biradiate | 双辐射的
-
biradiate:双辐射的
biradial | 两侧辐射对称的,双重对称的 | biradiate | 双辐射的 | biradical state | 双游离基态
-
bisulphate:酸式硫酸,硫酸氢盐
bistatic reflectivity 双静态反射 | bisulphate 酸式硫酸,硫酸氢盐 | bisymmetric 双对称的
-
bisymmetric:双对称的
bisulphate 酸式硫酸,硫酸氢盐 | bisymmetric 双对称的 | bit error rate 误码率;位视误差比
-
bisymmetric:双对称的, 两轴对称的, 两侧对称的
biswitch | 双向硅对称开关 | bisymmetric | 双对称的, 两轴对称的, 两侧对称的 | bisymmetrical cleavage | 两侧对称(卵)裂, 二轴对称(卵)裂
-
bisymmetrical cleavage:两侧对称(卵)裂, 二轴对称(卵)裂
bisymmetric | 双对称的, 两轴对称的, 两侧对称的 | bisymmetrical cleavage | 两侧对称(卵)裂, 二轴对称(卵)裂 | bisymmetrical type | 两侧对称式
-
dispireme:双纽
dispira 双纽 | dispireme 双纽 | disymmetrical 二对称的