- 更多网络例句与单调递减函数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In chapter two, under the assumption that the set of decision variables is convex and the objective functions are concave, it is shown that the set of noninferior solutions in valued space of the objective functions turns out to be a strictly decreasing, concave and no chinky block of surface, and it can be constructed recursively.
在第2章凸性假设下非劣解集的构造及其几何性质中,在假设决策变量集为凸集,目标函数向量是凹的情况下,证明了目标函数向量值空间中的非劣解集是一严格单调递减,无缝隙且凹的曲面块,并给出了m维目标函数向量值空间中非劣解集的一种递归构造方式。
-
The result is that content of organic overlap is degression function of nanocrystalline average size.
使用TG-DTA测试研究了纳米颗粒表面有机包覆层的性质,结果表明包覆剂含量是纳米晶平均颗粒度的单调递减函数。
-
The convergence of the mean shift procedure to the closest mode of the underlying distribution is proven, both for the Epanechnikov kernel and the general case of kernels with convex and monotonic decreasing profile. The smooth trajectory property of the mean shift is also demonstrated.
均值平移算法对于Epanechnikov 核函数的收敛性在本文中得到了证明,进而推出均值平移算法收敛的充要条件是核函数具有凸的、单调递减性质的轮廓;揭示了均值平移过程运动轨迹的平滑性。
-
The second research has also got that a function of slopes to C values is monotone decreasing function when target circles are bigger than distractors circles.
研究二针对目标圆大于干扰子圆大的条件,得到的目标搜索斜率对C值的函数也是单调递减函数,并确定了平行搜索与系列搜索的临界点〓(0.497)。
-
When target values are bigger than distractors values, the two experiments have found that a function of slopes to C values is monotone decreasing function, that slopes are identical under same C values, and that there is no significant difference between circles stimulus and triangles stimulus under same C values.
实验发现在目标大于干扰子条件下,目标搜索斜率对C值的函数是单调递减函数;C相等时的目标搜索斜率也相等;C相等时的圆和三角形两种刺激形状之间的目标搜索斜率无显著差异。
-
The ratio C is difference between target value and distractors values divided by distractors values. Three hypotheses are as follows:(1) A function of slopes to C absolute values is monotone decreasing function.(2) Slopes are equal when C values are same.(3) If C absolute value is bigger than Cp absolute value, searching for a target is parallel search, or is serial search.
为了解决上述问题,笔者引入目标值和干扰子值的差值与干扰子值的比值C,提出了以下三个假设:(1)目标搜索斜率对C值绝对值的函数是单调递减函数;(2)当C值相同时,其目标搜索斜率应相等;(3)当|C|〓|〓|时,目标搜索是平行搜索,否则为系列搜索。
-
We construct a kind of special matrix function, which is used to characterize the minimization property of this iterative method, and prove that the approximate solution, generated by this iterative method, minimizes this kind of matrix function over a special affine subspace, which means that the Frobenius norm of the residual sequence is strictly monotone decreasing.
通过构造一类特殊的矩阵函数来刻画该迭代方法的极小化性质,并证明了由该迭代方法计算出来的逼近解,可使得这类矩阵函数在一个仿射子空间上达到极小,而且所得到的残差序列的Frobenius范数是严格单调递减的。
-
The problem of multi-objective usually meet many conflict each other and can not use the objective of the same standard unit, then to employ membership function of fuzzy theory,at first each objective function to change fuzzy set and express with membership function, membership function include the maximum constraint, minimum constraint, the decrease function of monotonic property, to become optimal of the multi-objective function, but still to scanty of weighting value with regard to adjustment of objective function, thus this thesis proposes the method of combine orthogonal arrays and particle swarm optimization to solve the problem of multi-objective optimal power flow, each objective function separately add weighting value, to setting each weighting value of objective function in order to the result of anticipating.
多目标最佳化的问题通常会面临到许多互相冲突且不能用同ㄧ标准单位的目标,於是利用模糊理论中的归属函数,首先将各目标函数转换成模糊集合并以归属函数表示,归属函数包含了最大限制值、最小限制值、单调的递减函数所组成,将各目标函数利用归属函数表示,形成单一目标函数的最佳化,但是仍缺乏权重值对於目标函数的调整,於是本篇论文提出ㄧ种权重值设定与粒子群优演算法的方法去解决多目标最佳电力潮流的问题,将各目标函上分别加上权重值设定各目标函数的权重值,得到预期的效果。
-
There are fault data during the data acquisition due to uncertain disturbance; these data will degrade the navigation accuracy of whole system. A continuous degressive function is presented in this paper. This function can eliminate the influence of disturbance and improve filter precision.
由于不确定性干扰使数据采样中会存在野值,这些野值会大大降低整个系统的导航精度,本文提出了对新息乘以一个单调递减的加权函数的算法,能消除干扰的影响,滤波结果更为可靠、准确。
-
Deduced the analytical structure of the Mamdani fuzzy system whose input sets were with generalized linear membership function and manifested that the output of the fuzzy systems were monotonical, decreasing, continuous and bounded.
设计了一种将三角形和梯形隶属函数作为特例的广义线性隶属函数,推导了输入采用广义线性隶属函数的典型Mamdani模糊系统的解析结构,证明了典型模糊系统是单调、递减的有界连续函数;在此基础上证明了该类模糊系统能以任意精度逼近任意连续实函数,最后仿真实例证明了本设计的有效性。
- 更多网络解释与单调递减函数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
monotonic decreasing function:单调递减函数
monotonic decreasing 单调递减 | monotonic decreasing function 单调递减函数 | monotonic function 单调函数
-
monotonic decreasing function:单调递减函数Btu中国学习动力网
monotonic decreasing 单调递减Btu中国学习动力网 | monotonic decreasing function 单调递减函数Btu中国学习动力网 | monotonic function 单调函数Btu中国学习动力网
-
monotonic decreasing function:单调递减函数无忧雅思网
monotonic decreasing 单调递减无忧雅思网LZ [ _ | monotonic decreasing function 单调递减函数无忧雅思网6hI#H9o[8w*xK | monotonic function 单调函数无忧雅思网fyLn"T.R
-
monotone decreasing function:单调递减函数
monostable 单稳态式 | monotone decreasing function 单调递减函数 | monotone function 单调函数
-
A decreasing function:单调递减函数
An increasing function 单调递增函数 | A decreasing function 单调递减函数 | Interval n.区间
-
An increasing function:单调递增函数
Parity n. 奇偶性 | An increasing function 单调递增函数 | A decreasing function 单调递减函数
-
monotone decreasing sequence:单调递减序列
monotone decreasing function 单调递减函数 | monotone decreasing sequence 单调递减序列 | monotone increasing 单调递增
-
monotonic decreasing:单调递减
monotonic convergence 单调收敛性 | monotonic decreasing 单调递减 | monotonic decreasing function 单调递减函数
-
monotonic decreasing:单调递减Btu中国学习动力网
monotonic convergence 单调收敛性Btu中国学习动力网 | monotonic decreasing 单调递减Btu中国学习动力网 | monotonic decreasing function 单调递减函数Btu中国学习动力网
-
monotonic decreasing:单调递减无忧雅思网
monotonic convergence 单调收敛性无忧雅思网4_/ybF:^qJ-o!a | monotonic decreasing 单调递减无忧雅思网LZ [ _ | monotonic decreasing function 单调递减函数无忧雅思网6hI#H9o[8w*xK