- 更多网络例句与单元论相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Theoretical combination between RSIM Theory and Geography Location Theory was discussed based on Land Cellular Automaton.
以土地单元自动机为基础,研究了遥感信息模型理论与地理区位论的结合。
-
In this dissertation, we develop several power estimation and power modeling methods for combinational IPs.
在这篇论文中,我们针对组合逻辑电路的矽智产单元提出了一系列的功率消耗估测方法及功率消耗模型。
-
Graph theory is one of the unified modelling methods. Based on the traditional linear graph theory, the paper proposed the Extensible Elementary Linear Graph method, which could realize composable simulation for multidiscipline system, and perform inter-energy domain expression in a unified way.
图论方法是多领域统一建模方法之一,本文基于线性图建模方法,研究和发展了一种模块化的多领域建模方法——可扩展单元线性图复合仿真方法,以实现跨能量域的统一模型表达。
-
This article takes the teaching of conic sections as an example. By designing worksheets, teachers can introduce the historical material about conic sections to students. By way of using Apollonius' definition of parabola, ellipse and hyperbola, teachers can introduce the geometric aspect of "conic section" to students. By using the concept of " latus rectum " in Conics , we can connect "conic sections"-- representation of geometrical aspect, with "the equation of conic sections"-- representation of algebraic aspect to improving insufficiency of text books.
同时本文也试著从历史文本中寻找材料,简单举例说明数学教师可以如何应用这些史料在几何单元教学上,例如三角函数的正余弦定理,最后再以圆锥曲线的正焦弦为例,说明如何利用数学史料於此单元的教学,尤其是阿波罗尼斯的《锥线论》中对圆锥曲线的3个命题,将此3个命题的内容与意涵,尤其是正焦弦在圆锥曲线的几何意义上所扮演的角色,将其适当地融入教学中,将可使学生真正学习圆锥曲线的几何知识,而不再只是代数形式的几何知识。
-
Let us consider the first few sections of the Monadology.
先思考单元论开始的几部分。
-
The Monadology was intended to explain the nature of reality, so Leibniz naturally had to give an account of causality.
单元论就试图解释现实的自然,所以莱布尼茨很自然的给了我们一个因果律的解释。
-
Leibniz's mature philosophical system—the monadology—is a remarkable baroque construction.
4楼莱布尼茨的成熟哲学系统--单元论--是一个不平凡的巴洛克式构造。
-
At this point, the reader might object that there is a fundamental difference between Leibniz's monadology and the Matrix that precludes any comparison between them.
9楼到此为止,读者会认为莱布尼茨的单元论和黑客帝国没有什么基本的关系。
-
In what follows, I will try to elucidate the evidential support for the views presented in the Monadology, and show, pace Russell, that it is not merely a 'fantastic fairy tale'.
接下来,我会试图阐述一些支持单元论观点的证据,并且告诉罗素那不仅是"奇妙的童话"。
-
In this section, I will examine the conception of causality that Leibniz derives from the nature of the monads; I will use Leibniz's account of causality to elaborate a criticism of causality in the Matrix.
在这一章里,我会检验从单元论里衍生出来的因果律;我会用莱布尼茨的因果律来批判Matrix中的因果律。
- 更多网络解释与单元论相关的网络解释 [注:此内容来源于网络,仅供参考]
-
etiology:原因论
他认为:一心或脑单元M即一思维语言的符号之所以有意义就在于它指称一事物X,因为"意义存在于那个词的指称之中"而它能指称X,则正好是由于X"恰当地"出现在M的原因论(etiology)中,即由于M被人用来指称X,然后"经过共同体的实践",
-
module:模块
其基本要义是:人的心理是由遗传上规定的、功能独立的单元即"模块"(module)所构成的. 心理模块只能是天赋的,它是一种相对固定的、受到高度制约的天赋规定的组织. 模块天赋论的主要代表人物是哲学家福多(J.Fodor),语言学家乔姆斯基,
-
monadism:单元论
单元件的unary | 单元论monadism | 单元名UnitName
-
monophylesis, monogenesis:单元发生[论]
12.080 国家植物志 national flora | 12.081 单元发生[论] monophylesis, monogenesis | 12.082 多元发生[论] polyphylesis, polygenesis
-
polyphylesis, polygenesis:多元发生[论]
12.081 单元发生[论] monophylesis, monogenesis | 12.082 多元发生[论] polyphylesis, polygenesis | 12.083 单境起源 monotopic origin
-
singularism:单元论
故就本体论的数量而言,一般上分为一元论(Monism),或称单元论(Singularism),二元论(Bualism)、多元论(Pluralism). 简称单元论与多元论. 另外,本体论研究存在的本体,究竟为物质?抑或精神?这就产生了心与物的问题. 故就本体的性质而言,