- 更多网络例句与协变导数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Introduction of covariant derivative into particles field reflects the interaction of particles and field.
通过协变导数引进规范场,虽然体现了粒子与场的作用,但那是让粒子恢复"自由状态"的抵消作用。
-
Furthermore, under the assumption that the covariant derivative of the sectionssatisfies the Lipschitz condition with L-average along the geodesic, the estimates of the radiiof convergence balls of Newton\'s method and uniqueness balls of singular points around thesingular points of sections on Riemannian manifolds are given.
当截面的协变导数满足沿着测地线的关于取正值非减可积函数L-平均的Lipschitz条件条件时,本文给出关于截面的Newton法的收敛球半径的估计,及在奇异点附近的关于截面的奇异点的唯一性球的半径的估计。
-
Under the assumptionthat the covariant derivative of the sections satisfies the Lipschitz condition with L-averagealong the piecewise geodesic, a unified convergence criterion for Newton\'s method and theradii of the uniqueness balls of singular points around the initial points of sections are es-tablished.
本章的主要内容包括以下两个方面:当截面的协变导数满足沿着分段测地线的关于取正值非减可积函数L-平均的Lipschitz条件条件时,本文给出了关于截面的Newton法收敛的统一判据,同时给出了在初始点附近的关于截面的奇异点的唯一性球的半径的估计。
-
The inconsistencies of dimensional reduction and naive dimensional regularization in dealing withChern-Simons-matter theory are analyzed.The consistent dimensional regularization combiningwith higher covariant derivative regularization is adopted to consider Chern-Simons field theorycoupled to complex scalar and spinor field.All the local parts of one-loop two-point functionsand three-point functions are computed.Slavnov-Taylor identity is combined with these explicitcalculation results to give the one-loop local effective action.The finite gauge invariant quantumcorrection is shown and finite wave function renormalization constant for each field is defined.Thelocal part of one-loop three gauge field vertex is especially evaluated and it is verified that thereexists a renormalization choice compatible with BRST symmetry.
然后计算了所有的两点函数和三点函数单圈修正的定域部分,利用S-T恒等式给出了单圈定域有效作用量,定义了场的重正化常数,发现物质场和规范场都存在有限的规范不变的量子修正,并讨论了这些有限的规范不变的量子修正的物理意义,进而通过考察单圈三规范场顶角,表明存在与BRST对称性相容的重正化选择。5、在背景场方法的框架下,选择高阶协变导数正规化与维数正规化的杂化正规化方案计算了背景场两点函数的两圈量子修正,结果表明,标志紫外发散的极点项恰好抵消;进一步利用背景场方法中明显的规范对称性,证明背景场三点函数的两圈图贡献也是有限的。
- 更多网络解释与协变导数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
covariant derivative:协变导数
协变分量 covariant component? | 协变导数 covariant derivative? | 协变张量 covariant tensor?
-
covariant derivative:协(共)变导数;共变微分
协(共)变曲线 covariant curve | 协(共)变导数;共变微分 covariant derivative | 协(共)变微分法 covariant differentiation
-
covariant derivative:协变导数, 协变微商
covariant component 协变分量 | covariant derivative 协变导数, 协变微商 | covariant tensor 协变张量
-
covariant differentiation:协(共)变微分法
协(共)变导数;共变微分 covariant derivative | 协(共)变微分法 covariant differentiation | 协(共)变函子 covariant functor
-
covariant tensor:协变张量
协变导数 covariant derivative? | 协变张量 covariant tensor? | 协变式 covariant?
-
covariant component:协变分量
协变坐标 covariant co ordinate? | 协变分量 covariant component? | 协变导数 covariant derivative?
-
Bianchi identity:毕安其恒等式
它涉及到协变导数:...给定流形某点的任一坐标表示,上述恒等式可以用黎曼曲率张量的分量形式表示为:另一个有用的恒等式可以由上面这些导出:...称为毕安其恒等式(bianchi identity),经常也叫第二毕安其恒等式(Second bianchi identity)或
-
Bianchi identity:比安基恒等式
称为比安基恒等式(Bianchi identity),经常也叫第二比安基恒等式(Second Bianchi identity)或微分比安基恒等式(Differential Bianchi identity). 它涉及到协变导数: