- 更多网络例句与半离散化相关的网络例句 [注:此内容来源于网络,仅供参考]
-
First of all,a more reasonable dither matrix is constructed through element re-composition and discrete rotation based on the primary dispersed-dot Bayer dither matrix.
首先,将原驱散式Bayer抖动矩阵进行元素重组和离散旋转以构造一个更为合理的抖动矩阵,然后按照新矩阵对图像进行半色调化处理。
-
The unique advantage of this halfanalytical numerical method is that the analytical process of Conformal Mapping can transform an irregular area into a regular one such as a rectangle. Therefore, the discretization error of numerical methods on the boundary can be avoided, and the numerical algorithm can be implemented more easily, with the computing efficiency improved.
这种保角变换的半解析数值方法的突出优点是:利用前期的保角变换解析处理将不规则的场域转化为规则的矩形域,从而避免了纯数值技术对复杂边界的离散化误差,降低了后期数值计算的算法复杂度,并提高了计算效率。
-
In Chapter 6, based on discretization technique an implementable algorithm for nonconvex generalized semi-infinite minimax problems is presented and, utilizing properties of generalized quasi-directional derivative, its global convergence is proven under weak conditions.
对于广义极大极小问题,本文第六章在较弱的条件下,利用广义伪方向导数的性质,用离散化的技巧给出了非凸广义半无限极大极小问题的一种可实现的全局收敛算法。
-
Each step of the iteration is to solve a linear semi-infinite programming that is transformed into a linear programming by frequency discretization.
每步迭代都是求解一个线性半无穷规划,通过离散化处理线性半无穷规划可以转化为线性规划来求解。
-
To obtain quadratical convergence, however, strict complementarity condition at the Danskin point was used. The condition is too strict to be satisfied in many practical problems such as discrete semi-infinite minimax problem. Another kind of Newton method for finite minimax problems was presented by E. Polak and, without strict complementarity at the Danskin point, superlinear convergence (of order 3/2) was proven.
Polak等人提出了一种直接求解极大极小问题的二阶收敛的牛顿法,但是为获得二阶收敛速度要求在Danskin点处满足严格互补条件,这个条件太强,很多实际问题尤其是半无限极大极小问题的离散化不满足该条件;他们又给出另外一种牛顿法,在不假设严格互补条件成立的情况下,证明了它的超线性(3/2阶)收敛性。
-
By solving the simultaneous equations of discrete BIEs and friction law, spontaneous rupture can be calculated.
摩擦准则和本文建立的离散化边界积分方程联立,即可求解半空间的断层上的自发破裂传播问题。
-
The discretisation of the velocity space in the kinetic theory of gases allowsus to replace an integro-partial-differential equation,the Boltzmann equation,by a system of hyperbolic semi-linear partial differential equations.
在气体运动论中将速度空间离散化处理,使得我们可以用一个双曲型的半线性偏微分方程组来取代Boltzmann方程这个积分微分方程。
-
At each time step, the variational formulation of the semidiscrete problem is derived.
借助人工边界条件给出半离散化问题的变分形式,讨论了所得的变分问题解的存在性与唯一性。
-
The variational problem of semi-discrete problem is given, the well-posedness of the variational problem is proved, and some error estimates are presented.
给出半离散化问题的变分问题,证明了变分问题的适定性,并给出了误差估计。
-
Existence and uniqueness of the variational solution are established.
详细分析了半离散化格式的稳定性,给出了格式的稳定性条件。
- 更多网络解释与半离散化相关的网络解释 [注:此内容来源于网络,仅供参考]
-
semidiscretization:半离散化
semidirect product 半直积 | semidiscretization 半离散化 | semifinite 半有限的
-
semifinite:半有限的
semidiscretization 半离散化 | semifinite 半有限的 | semifinite trace 半有限迹
-
semi-diesel engine:低压缩比柴油机
semi-depleted reservoir 半枯竭油层 | semi-diesel engine 低压缩比柴油机 | semi-discretisation 半离散化