英语人>词典>汉英 : 半单代数 的英文翻译,例句
半单代数 的英文翻译、例句

半单代数

词组短语
semisimple algebra
更多网络例句与半单代数相关的网络例句 [注:此内容来源于网络,仅供参考]

Suppose G is a finite group, then QG is a semisimple Q-algera, obviously ZG is a Z-order of QG,we denote the maximal Z-order by ?.If G is not abelian, it is not an easy thing to determine г; if G is an abelian group, then QG is isomorphic to the direct sum of a finite number of number fields, and r is the direct sum of these rings of algebraic integers of those number fields, but which elements of QG belong to r is not clear.

设G是一个有限群,那么QG是一个半单代数,ZG是QG的一个Z-序,设Γ是QG的一个极大Z-序,当G是一个非交换群时,Γ的求解是困难的问题;当G是一个交换群时,QG同构于有限多个数域的直和,Γ相应的就是各数域代数整数环的直和,但Γ具体是QG中那些元素不清楚。

We investigate the centralizer of an arbitrary element of a Lie algebra of type L and obtain a sufficient condition for a Lie algebra of type L being semisimple.

在李代数方面,我们研究了L-型李代数中任一元素的中心化子,给出了L-型代数为半单代数的充分条件。

Libermann.The early researcheson this kind of manifolds were closely related to Physics and Mechanics.But since1991,S.Kaneyuki published his result on the algebraic condition for the existence ofinvariant〓structures on a coset space,Lie theory has played the most impor-tant role in the study of this kind of manifolds.In particular,dipolarizations in a Liealgebra are closely related to the homogeneous〓manifolds.Dipolarizationsin semisimple Lie algebras and the homogeneous〓manifolds associated withthese dipolarizations have been studied by S.Kaneyuki,Z.X.Hou and S.Q.Deng.Inthe partⅡ of this thesis we study the dipolarizations in some quadratic Lie algebrasand the homogeneous parakahler manifolds associated with these dipolarizations.

Libermann给出的,早期的有关类流形的研究与物理和力学密切相关,自从1991年金行壮二发表了陪集空间上存在不变仿凯勒结构的代数化结果后,李群及李代数理论在这类流形的研究中起着主要作用,特别地,李代数的双极化与这类流形密切相关,半单李代数的双极化的相关几何,金行壮二,候自新和邓少强等人已作了研究,二次李代数是比半单李代数更广且带有非退化不变双线性型的李代数,本文主要研究了二次代数的双极化及相关几何。

Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.

具体地讲,它们共分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。

In this paper we consider the semisimplicity of implicative BCK-alge-bras and obtain several equivalent conditions which an implicative BCK-algebra is semisimple.

本文考虑关联BCK-代数的半单性,得到这类代数为半单的若干等价条件。

In this paper, we mainly study representations of strong semisimple n-Lie algebras, prove that a representation of a strong semisimple n-Lie algebra is a representation of the reductive Lie algebra LP, and the relative properties.

本文主要研究了强半单的n-李代数的表示,证明了强半单的n-李代数的表示可转化为一个约化李代数Lρ的表示,并证明了不变线性形等其它相关性质。

In this paper, we first give the Maschke's theorem of smash product A#H * about semisimple algebra , after studing smash product # definited by Y.

Doi 所定义的Smash 积#,给出了Smash 积A# H*关于半单代数的Maschke 定理;给出了可分代数与余可分余代数之间的对偶关系。

The solvable Lie algebra is corresponding to a cascade decomposition of the system and the semisimple Lie algebra is corresponding to a qasi-parallel decomposition such that the system has a parallel form of a cascade decomposition and a qasi-parallel decomposition.

任一李代数都可分解为一可解李代数与一半单李代数的半直和,可解李代数对应于系统的级联分解,半单李代数对应的是系统的准平行分解,将二者合并起来,就得到一般李群下的非线性系统的结构分解,这是一级联形式与一准平行形式的并联形式分解。

Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.

具体地讲,它们共(来源:5fbfA02BC论文网www.abclunwen.com)分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。

In the fifth chapter,we study dipolarizations in some quadratic Lie algebras.Inthe first section,we obtain some results on the classification of dipolarizations in gen-eral quadratic Lie algebras,and prove that there exist dipolarizations in the solvablequadratic Lie algebras whose Cartan subalgebras consist of semisimple elements.

第五章讨论了某些二次李代数的双极化,在第一节中,我们给出了二次李代数的双极化的一些分类结果;特别证明Cartan子代数是由半单元组成的二次李代数上存在双极化,第二节确定了四维扩张Heisenberg代数的所有双极化,在第三节中,我们构造了2n+2维扩张Heisenberg代数的六类双极化,我们发现两个不同于半单李代数情形的有趣事实:(1)在扩张Heisenberg代数上同时存在对称和非对称双极化;(2)对应于扩张Heisenberg代数的双极化的特征元有的是半单的有的是幂零的。

更多网络解释与半单代数相关的网络解释 [注:此内容来源于网络,仅供参考]

absolutely prime ideal:绝对素理想

absolutely normal number 绝对范数 | absolutely prime ideal 绝对素理想 | absolutely semisimple algebra 绝对半单代数

absolutely semisimple algebra:绝对半单代数

absolutely prime ideal 绝对素理想 | absolutely semisimple algebra 绝对半单代数 | absolutely simple group 绝对单群

absolutely simple group:绝对单群

absolutely semisimple algebra 绝对半单代数 | absolutely simple group 绝对单群 | absolutely summable sequence 绝对可和序列

semi-simple Jordan algebra:半单若尔当代数

半单模|semi-simple module | 半单若尔当代数|semi-simple Jordan algebra | 半单线性变换|semi-simple linear transformation

semiscalar product:半纯量积

semiregular topology 半正则拓扑 | semiscalar product 半纯量积 | semisimple algebra 半单代数

semisimple algebra:半单代数

semiscalar product 半纯量积 | semisimple algebra 半单代数 | semisimple group 半单群

semisimple group:半单群

semisimple algebra 半单代数 | semisimple group 半单群 | semisimple module 半单模

Wedderburn:确定半单代数

1904:Schur建立无限群表示 | 1905:Wedderburn确定半单代数 | 1911:Steinitz奠基域论