- 更多网络例句与区间估计相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Describes general methods of point and interval parameter estimation and the small and large sample properties of estimators: method of moments, maximum likelihood, unbiased estimation, Rao-Blackwell and Lehmann-Scheffe theorems, information inequality, asymptotic relative efficiency of estimators.
点估计和区间估计的一般方法,估计量的小样本和大样本性质:矩法,极大似然估计,无偏估计,Rao-Blackwell 和 Lehmann-Scheffe 理论,信息不等式,渐进相对有效估计量。
-
Maximum likelihood, unbiased estimation, Rao-Blackwell and Lehmann-Scheffe theorems, information inequality, asymptotic relative efficiency of estimators.
点估计和区间估计的一般方法,估计量的小样本和大样本性质:矩法,极大似然估计,无偏估计,Rao-Blackwell 和Lehmann-Scheffe 理论,信息不等式,渐进相对有效估计量。
-
Finishing calculation of mean value, standard deviation, skewness, kurtosis of Beta distribution.(2) Fitting parameters of many kinds of typical distribution and using residual deviation to evaluate fitting precision.(3) Using Beta distribution as an agreed indication distribution applied to many kinds of practical photoelectric measurement distributions.(4) Deriving theory formula of Bayes point estimation about Beta distribution parameters and mean value and standard deviation on the condition of mean square error loss function and supposed the prior distribution is uniform distribution.(5) Generating MCMC sample from post distribution by the method of Gibbs sample algorithm. Calculating bayes point estimation from sample on the condition of mean square error loss function. Calculating confidence interval by an approximate method to complete interval estimation.
本文的主要工作有:(1)解决了Beta分布参数a和b的精确计算以及均值、标准差、偏度、峰度的计算问题;(2)拟合出10余种典型分布的Beta分布的两个参数,并且采用剩余标准差评价该Beta分布的拟合精度;(3)对多种典型的光学与光电测量系统的测量分布进行了Beta分布统示表示;(4)在假设先验分布为均匀分布前提下,得到参数a和b以及均值μ和标准差σ在均方误差损失函数下的贝叶斯点估计理论计算公式;(5)利用直接抽样的Gibbs抽样算法,从后验分布中产生MCMC样本,从样本直接计算均方误差损失函数下的贝叶斯点估计,并使用一种近似方法计算其置信区间,完成区间估计。
-
Meanwhile, it could be seen that there does not exist a confidence interval with width less than 0.5 because of the property of Poisson distribution. Based on these conditions, the author mainly carried out research into two aspects of this problem as follows. Firstly, by numerical and theoretical analysis, the author compares some existent confidence intervals, for example,"exact" confidence interval, Wald confidence interval and Bayesian confidence interval, and finds some deficiencies points of the confidence intervals, whose modification version has been proposed .Also, several better confidence intervals such asare also presented .Secondly, for given confidence coefficient and interval width, the author constructs a class of asymptotical two-stage interval estimate procedures. At the same time, under varies restriction of confidence coefflcientent interval width, the optional sample size of the first stage has been computed by numerical computation. The numerical computation shows that the method considered in this dissertation have good properties and applied value.
同时,由于Poisson分布的特性,我们知道不存在其参数区间长度小于0.5的置信区间,基于这些情况,我们主要展开了以下两个方面的研究:一是利用数值计算分析与理论分析的方法对现有的若干置信区间如"精确"置信区间,Wald置信区间,Bayes置信区间等进行分析比较,发现了一些缺陷,针对这些缺陷,我们进行适当的修正,并得到几种性质较好的置信区间如:修正大样本区间Jeffreys原则下置信区间二是针对已给定的置信系数与区间长度,我们提出了一种渐近的两阶段区间估计程序,并利用数值计算的方法,在各种置信系数与区间长度限定下,算出了最优的第一阶段观测次数,大量数据表明,本文考虑的方法性态良好,具有应用价值。
-
According to the criterion of minimizing the sum of the squares of the states posterior confidence region widths, we get the value of the updated Biscay distribution, then get the states interval estimation.
该方法结合了区间运算和Kalman滤波方法,分别根据状态和观测方程得到的预测值的Biscay分布,融合得到估计的Biscay分布值,进而得到状态的区间估计。
-
Precision and reliability are two contradictory aspects of the theory of interval estimates. To find a confidence interval of prescribed width and prescribed probability is of groat importance in practical applications, arid thereby sequential procedures have to be employed in many cases.
精确度与可靠度是区间估计理论中互相矛盾的两个方面,寻找同时满足精确度与可靠度的区间估计在实际应用中具有重要价值。
-
In this paper,after the concept of infinite interval estimating and its utmost goodness are built,the optimal relation between infinite interval estimating and relevant hypothesis testing is proved.
在提出无穷区间估计以及其上的最优性概念之后,证明了无穷区间估计与相应假设检验的最优性之间的关系,及推演了若干重要的无穷区间估计的最优性。
-
Based on the order statistic theory,the interval estimation of sample extremes on large and small samples is given.
本文从次序统计理论出发,建立了该样本的极大值与极小值的区间估计算法,并对大容量和小容量样本的情况分别进行了讨论,获得了在小样本情况下可用母体均匀分布获得的结果来估计样本极值区间的结论。
-
When sample size is not large, conclusion shows that the precision of the interval estimation of parameter is remarkably increasing if the data from Tables in this paper are used.
通过计算比较,得出结论:在小样本的情况下,用本文所求的置信区间作为未知参数的区间估计将会使估计精度得到显著的提高。
-
So a Matlab p rogram is developed to op timize interval estimation on variance of normal distribution and p rovide arith2 metic of hypothesis testing on variance of normal distribution.
5统计工具箱没有优化正态总体方差的区间估计,且没有给出正态总体方差检验的问题,通过编写Matlab程序,优化统计工具箱对正态总体方差的区间估计,开发正态总体方差的假设检验算法。
- 更多网络解释与区间估计相关的网络解释 [注:此内容来源于网络,仅供参考]
-
estimate by a interval:区间估计
Esthonia 国际快艇比赛用字母 | estimate by a interval 区间估计 | estimate of parameters 参数估计
-
DOA estimation:到达角估计
成本预测:Cost estimation | 到达角估计:DOA estimation | 区间估计:extent estimation
-
Interval estimation:区间估计
五力分别是: 供应商的讨价还价能力、购买者的讨价还价能力、潜在竞争者进入的能力、替代......用数轴上的一段经历或一个数据区间,表示总体参数的可能范围.这一段距离或数据区间称为区间估计的置信区间 区间估计(interval estimation)是从点估计值和抽样标准误出发,
-
Interval estimation:区间估计;区域估计
interval 区间 | interval estimation 区间估计;区域估计 | intuition 直观
-
Point estimation:点估计
所谓参数估计就是用样本统计量来估计总体参数,有点估计(point estimation)和区间估计(interval estimation)之分. 将样本统计量直接作为总体相应参数的估计值叫点估计. 点估计只给出了未知参数估计值的大小,没有考虑试验误差的影响,
-
interval estimation method:区间估计法
中耕 intertillage weeding | 区间估计法 interval estimation method | 品种间的 intervarietal
-
Bayesian interval estimation:贝氏区间估计
贝氏推论 Bayesian inference | 贝氏区间估计 Bayesian interval estimation | 贝氏模型 Bayesian model
-
Leaf Order Interval:叶序区间
区间算法:interval method | 叶序区间:Leaf Order Interval | 区间估计:Interval Estimate
-
confidence intervals:信赖区间
此涉及信赖区间(confidence intervals)的估计步骤. 信赖区间是估计在一个范围内的数值,而非单一数值. 如果您报告说大约有「39%到45%的选民」会投给某人,就是一种区间估计之例子. 点估计:以一组样本之样本统计量;如样本平均数、样本变异数、估计全部母体的母体参数;
-
confidence intervals:区间估计
区间值排序:ranking intervals | 区间估计:confidence intervals | 放电间期:Interbeat intervals